
Int J Comput Vis
DOI 10.1007/s11263-016-0921-6

Adaptive Spatial-Spectral Dictionary Learning for Hyperspectral
Image Restoration

Ying Fu1 · Antony Lam2 · Imari Sato3 · Yoichi Sato1

Received: 15 August 2015 / Accepted: 26 May 2016
© Springer Science+Business Media New York 2016

Abstract Hyperspectral imaging is beneficial in a diverse
range of applications from diagnostic medicine, to agricul-
ture, to surveillance to name a few. However, hyperspectral
images often suffer from degradation such as noise and
low resolution. In this paper, we propose an effective
model for hyperspectral image (HSI) restoration, specifically
image denoising and super-resolution. Our model consid-
ers three underlying characteristics of HSIs: sparsity across
the spatial-spectral domain, high correlation across spectra,
and non-local self-similarity over space.We first exploit high
correlation across spectra and non-local self-similarity over
space in the degradedHSI to learn an adaptive spatial-spectral
dictionary. Then, we employ the local and non-local sparsity
of the HSI under the learned spatial-spectral dictionary to
design an HSI restoration model, which can be effectively
solved by an iterative numerical algorithm with parameters
that are adaptively adjusted for different clusters and differ-
ent noise levels. In experiments on HSI denoising, we show
that the proposed method outperforms many state-of-the-art
methods under several comprehensive quantitative assess-
ments. We also show that our method performs well on HSI
super-resolution.
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1 Introduction

Restoring a high-quality image fromdegradedmeasurements
is a typical inverse problem in image processing. It has been
extensively studied in the past decades and is widely imple-
mented in our daily life, medical imaging, surveillance, and
entertainment, to name a few. Hyperspectral images (HSIs)
provide much richer information about scenes than three-
band RGB images but often times, they easily suffer from
degradation such as noise and low resolution.

Hyperspectral imaging is the process of capturing images
of a scene over multiple bands of the electromagnetic spec-
trum. When captured, a HSI can be thought of as a set of
2D spatially organized “pixels” where each pixel contains
an entire spectral distribution over wavelengths. This allows
us to see the spectral distribution of any given surface point
in a scene and has led to numerous applications in remote
sensing (Borengasser et al. 2007; Wang et al. 2009; Teke
et al. 2013), classification or detection (Melgani and Bruz-
zone 2004; Renard and Bourennane 2008; Bourennane et al.
2010; Castrodad et al. 2011; Kang et al. 2014), diagnos-
tic medicine (Stamatas et al. 2003; David and Dicker 2006;
Gupta andRamella-Roman 2008;Hou et al. 2013; Lu and Fei
2014), surveillance (Banerjee et al. 2009), biometrics (Rowe
et al. 2005), and more. However, conventional hyperspectral
imaging suffers from issues such as limited light in individual
bands, which introduces noise into the imaging process. In
addition, limited sampling also results in low resolution and
lack of details. The degradation of HSIs not only influences
the visual appearance of these images but also limits the per-
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formance of classification and detection methods. Therefore,
HSI restoration is a critical step in any HSI based system
pipeline.

Recently, sparse representation based models have been
widely used in image restoration (Ingrid Daubechies 2004;
Bioucas-Dias and Figueiredo 2007; Zibulevsky and Elad
2010;Dabov et al. 2007;Mairal et al. 2009b;Elad andAharon
2006; Yang et al. 2010; Dong et al. 2011, 2013; Parmar et al.
2008). The success of sparse representation models owes to
the development of l1-norm optimization techniques (Can-
des and Tao 2006; Chen et al. 1998; Ingrid Daubechies 2004;
Donoho 2004) and the finding that natural images are intrin-
sically sparse in many domains (Olshausen and Field 1996,
1997). These domains can be represented by dictionaries,
which can be constructed from basis functions (e.g. DCT,
Wavelets), adaptive learning [e.g. K-SVD (Elad and Aharon
2006)], and stochastic approximations (Mairal et al. 2009a).
In addition, due to natural images containing self-repeating
patterns, the self-similarity of overlapping patches has been
introduced in many papers on topics such as denoising
(Buades et al. 2005;Dabov et al. 2007), demosaicing (Buades
et al. 2009), super-resolution (Glasner et al. 2009; Yang et al.
2011), and frame rate up-conversion (Shimano et al. 2011).

Dong et al. (2013, 2015) was able to combine both
sparse representation and non-local self-similarity to restore
grayscale natural images to great effect. However, their
grayscale image approach is not ideally suited to HSIs since
the relationship betweenbands is not considered.On theother
hand, Lamet al. (2012) showed that spectral domain statistics
can help HSI denoising. This suggests there is rich informa-
tion in the spectral domain that can be utilized. Therefore,
the potential use of sparse representation, non-local self-
similarity, and spectral domain statistics jointly should be
studied.

In this paper, we propose a novel HSI restoration method
based on adaptive spatial-spectral dictionary learning as
well as local and non-local sparse representations. We first
adaptively learn a spatial-spectral dictionary for each over-
lapping cubic patch of the HSI. By design, each dictionary
can sparsely represent its own cubic patch while shar-
ing features with other non-local patches that are similar.
Specifically, the dictionary effectively considers the high
correlation across the spatial-spectral domain. Then, spar-
sity and non-local self-similarity constraints are used in the
model, which can be solved effectively by an iterative shrink-
age algorithm and also allows us to adaptively adjust the
regularization parameters for different clusters and different
noise levels. Our method outperforms many state-of-the-art
HSI denoising methods under several comprehensive quan-
titative assessments and also achieves high performance in
HSI super-resolution.

The remainder of this paper is organized as follows. Sec-
tion 2 reviews related work. In Sect. 3, our approach to

adaptive spatial-spectral dictionary learning for HSI restora-
tion is presented. In Sect. 4, the numerical algorithm for our
model is described in detail. Extensive experimental results
are presented in Sect. 5. Finally, conclusions are drawn and
future directions are discussed in Sect. 6.

2 Related Work

In the following, we will review the most relevant studies on
HSI denoising and super-resolution.

2.1 Hyperspectral Image Denoising

A number of algorithms such as K-SVD (Elad and Aharon
2006), Non-local means (Buades et al. 2005) and BM3D
(Dabov et al. 2007) have been developed for 2D image
denoising. These methods can be directly applied to HSI
denoising by denoising each band image independently.
However, considering the bands to be independent limits
performance. Qian et al. (2012) and Maggioni et al. (2013)
denoised HSIs by considering 3D cubes of the HSI instead
of the 2D patches in traditional image restoration but these
methods ignore the high correlation across spectra and this
limits their performance.

There are several methods based onWavelets and/or prin-
cipal component analysis (PCA) forHSI denoising.Atkinson
et al. (2003) and Othman and Qian (2006) both proposed
wavelet-based HSI denoising algorithms. Guangyi and Q
(2009) and Chen and Qian (2011) proposed performing
dimensionality reduction and HSI denoising using wavelet
shrinkage and PCA. Lam et al. (2012) used PCA for dimen-
sionality reduction in the spectral domain and then performed
denoising in local spatial neighborhoods to further improve
denoising results.

Severalmethods used tensor decompositions.Letexier and
Bourennane (2008) proposed anHSI denoisingmethodbased
on a generalized multidimensional Wiener filter by using
a third-order tensor. Renard et al. (2008) used a low rank
tensor approximation to jointly achieve denoising and spec-
tral dimensionality reduction. Karami et al. (2011) reduced
the noise of HSIs by using their Genetic Kernel Tucker
Decomposition. Guo et al. (2013) denoised HSIs based on a
high-order rank-1 tensor decomposition.

In addition, Murakami et al. (2008) employed spatio-
spectral Wiener estimation to denoise multispectral images.
Wang et al. (2009, 2010) utilized an alternative hyperspec-
tral anisotropic diffusion scheme to denoise HSIs. Yuan et al.
(2012) employed a spatial-spectral adaptive total variation
model for their denoising scheme. Zhong and Wang (2013)
simultaneously modeled and utilized spatial and spectral
dependence in a unified probabilistic framework bymultiple-
spectral-band conditional random fields. Also, Zhang et al.
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(2014) explored the low-rank property of HSIs for image
restoration. Many of these methods exploited both spatial
and spectral information. However, none have utilized the
non-local similarity present in HSIs of natural scenes.

Qian and Ye (2013) introduced the non-local similarity
and spatial-spectral structure ofHSIs into a sparse representa-
tion framework, but their method used a global 3D dictionary
built from 3DDCT and 3DOWT,which cannot be adapted to
the specific characteristics of a given scene. Peng et al. (2014)
proposed an HSI denoising approach based on decompos-
able non-local tensor dictionary learning, but their method
did not explicitly consider the self-similarity within neigh-
boring cubic patches and cannot be directly extend to HSI
super-resolution.

2.2 Hyperspectral Image Super-Resolution

Recently, some researchers have begun to employ super-
resolution reconstruction approaches to improve the spatial
resolution of HSIs. Most of these methods make use of sev-
eral low resolution HSIs or a low resolution HSI with a high
spatial resolution panchromatic image to obtain a single high
resolution HSI.

Akgun et al. (2005) fused information from multiple
observations and spectral bands to improve spatial resolu-
tion and reconstruct the spectrum of the observed scene
as a combination of a small number of spectral basis
functions. Buttingsrud and Alsberg (2006) proposed a max-
imum entropy-based HSI super-resolution reconstruction
method by using multiple low resolution HSIs. Chan et al.
(2010) employed a multi-angular low resolution HSI to
reconstruct a high resolution one. Zhang et al. (2012) pro-
posed a maximum a posteriori estimation based multi-frame
super-resolution method for HSIs. All these multi-frame
based methods need to know or estimate motion parameters
between frames.

As an alternative, a number of researchers have tackled
the spatial super-resolution restoration of an HSI as an image
fusion problem, by use of an auxiliary high resolution image.
Eismann and Hardie (2004), Eismann and Hardie (2005),
Chen et al. (2014) and Zhao et al. (2011) used a high res-
olution panchromatic image for HSIs. Ma et al. (2013) and
Dong et al. (2016) employed an RGB video/image with high
spatial resolution to enhance a single HSI with low spatial
resolution.

In our work, we improve the spatial-resolution of low
resolution HSIs directly by considering the high correla-
tion across spectra, and do not require any auxiliary high
frequency image or multiple observations. Our ability to
both denoise and perform super-resolution with good per-
formance demonstrates the extensibility and effectiveness of
our method. We now detail how our model is able to solve
different restoration problems.

3 Hyperspectral Image Restoration Model

We assume a general model of HSI degradation based on the
following equation

Y = HX + n (1)

where H is a degradation matrix, X ∈ R
MNB and Y ∈

R
MhNh B are stacked vector representations of the original

clear HSI and the degraded HSI. M stands for the rows of
the image, N represents the number of columns, and B is the
number of bands. Mh and Nh are the number of rows and
columns of the degraded HSI, which is related to the size of
degradation matrix H, and n is additive noise with the same
size as Y. With different settings of matrix H, Eq. (1) can
represent different image restoration problems, for example,
in image denoising, H is an identity matrix, and in image
super-resolution, H is a composite operator for blurring and
down-sampling.

In this section, we will present a novel adaptive spatial-
spectral dictionary learning based HSI restoration method,
which is regularized using local and non-local sparse con-
straints. The overall framework of the proposed method is
shown in Fig. 1. First, the noisy HSI is used to learn the adap-
tive spatial-spectral dictionary. Then, the trained dictionary
is employed to sparsely represent the HSI using both local
details and non-local self-similarities of the image. These
two terms are integrated into a unified variational framework
for optimization, which is solved by a numerical algorithm.
Through the iterations,we alternatingly update the dictionary
and restore the HSI. This process is iterated several times
until the optimization converges. In this paper, we apply the
proposed method to HSI denoising and super-resolution.

3.1 Adaptive Spatial-Spectral Dictionary Learning

We first show how we build the adaptive spatial-spectral dic-
tionary, which considers both non-local self-similarities and
the high correlation across spectra. The HSI is first divided
into overlapping cubic patches of size P × P × B, where
P < M and P < N . In our method, we consider the two
spatial dimensions as a whole. Each cubic patch centered at
the spatial location (i, j) can be described as Zi, j ∈ R

P2×B .
Each element in Zi, j can be denoted as Zi, j [n, b], where
n = 1, 2, . . . , P2 and b = 1, 2, . . . , B index the spatial
pixel location and spectral band, respectively.

In studies of the human visual system (Olshausen and
Field 1996, 1997), the eye’s cell receptive fields code natural
images using a small number of structural primitives sparsely
chosen from an over-complete code set. This suggests that
natural images are intrinsically sparse in some domains,
which can be described as a dictionary and constructed by
basis functions. Therefore, we can seek a representation
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Fig. 1 Overview of the proposed method for HSI restoration. The
degraded HSI is first used to learn the adaptive spatial-spectral dictio-
nary. Then, the trained dictionary is employed to sparsely represent the

HSI using both local details and non-local self-similarities of the image.
These two terms are integrated into a unified variational framework for
optimization, which is solved by a numerical algorithm

that allows us to analyze the high-dimensional Zi, j using
a smaller number of components. Then, Zi, j can be repre-
sented in terms of a linear superposition of basis functions,

Zi, j [n, b] =
∑

m

αmφm[n, b], (2)

where {φm} is a basis set, andαm are the corresponding scalar
coefficients.

According to previous research (Chakrabarti and Zickler
2011), an HSI’s dictionary can be decomposed into a product
of separate spatial and spectral components, that is to say,

φm[n, b] = Sd [n]Ur [b], (3)

where {Sd}P2

1 and {Ur }B1 are orthonormal bases spanning the
space of monochrome P × P spatial patches and the space
of spectral distribution from the B channels, respectively. In
practice, φm ∈ R

P2×B is reshaped to a vector Φm ∈ R
P2B .

This means that spatial basis {Sd}P2

1 and spectral basis {Ur }B1
can be separately trained, and then combined to obtain the
joint spatial-spectral dictionary.

As to how we specifically represent the bases for the spa-
tial and spectral domains, we first provide details for the
spectral domain. It is well known that large sets of spectra
consisting of natural scenes or extensive color samples can
be represented compactly in just 6 to 8 principal components
(Vrhel et al. 1994). So in the spectral domain, we reshape the
original HSI into B×MN and learn the spectral basis {Ur }B1
by PCA (Vrhel et al. 1994; Chakrabarti and Zickler 2011).
In addition, the spatial patches can also be represented by
PCA basis (Dong et al. 2011; Chakrabarti and Zickler 2011).
A simple test on the Columbia Multispectral Image Dataset
(Yasuma et al. 2008) reveals that 10,000 random 7×7 spatial
patches require only 6 principal components to capture 99%
of the variance. We also train the spatial basis {Sd}P2

1 using

PCA from monochrome patches pooled across all bands in
the spatial domain. The spatial-spectral dictionary {φm} can
then be constructed by different combinations of Sd and Ur

as shown in Eq. (3).
At this point, we could learn a single universal dictionary

for all spatial patches like in the cases of the analytically
designed wavelet dictionary (Qian and Ye 2013) and the
learned K-SVD (Elad and Aharon 2006). Indeed, one dictio-
nary can be used to represent any image patch. However, it
would lack sufficient flexibility to sparsely represent a given
local patch. In Dong et al. (2013) and Peng et al. (2014), they
collected patches that were similar to each other to learn a
local dictionary for each cluster instead of a universal dictio-
nary, thus allowing for more sparse representations. Inspired
by theirmethods, instead of learning a single universal dictio-
nary, we first cluster 2D monochrome patches pooled across
all bands in the spatial domain by k-means. This clustering
process considers the non-local self-similarity of the patches
across the full HSI, and we call it the global non-local self-
similarity. In practice, we cluster spatial image patches by
their high frequency patterns (rich textures and edges) as
opposed to clustering directly based on the pixel values in
the patches to avoid influence from overly similar intensi-
ties. The image of high frequency spatial patterns can be
obtained by

Xg = X − GX, (4)

where matrixG represents a blurring operater by a Gaussian
kernel convolved with the original image. Note that the high
frequency image Xg is only used to cluster similar patches
into clusters. We use the corresponding original patch xi, j
from X to learn the PCA basis for each cluster.

Let Sk = [S(k)
1 , S(k)

2 , . . . , S(k)
P2 ] represent the basis in the

spatial domain for cluster k (k = 1, 2, . . . , K ) and U =
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Fig. 2 Illustration of adaptive spatial-spectral dictionary learning.
First, the cubic patches are extracted from the HSI in the overlapping
pattern. Then, all the band images of the cubic patches are clustered
in the spatial domain. The spatial PCA bases for each cluster are then
learned independently. In the spectral domain, all spectral distributions
from the entire HSI are extracted as vectors and used to train the spectral
PCA basis. Finally, the adaptive spatial-spectral dictionary is derived
from the spatial and spectral PCA bases in which each cluster has its
own spatial-spectral dictionary

[U1,U2, . . . ,UB] be the basis in the spectral domain. The
combined spatial-spectral basis vectors are then formed by
S(k)
d ⊗Ur , for all pairs of d and r in cluster k. We obtain

�k = Sk ⊗ U, (5)

where �k = [Φ(k)
1 , Φ

(k)
2 , . . . , Φ

(k)
P2B

] is the spatial-spectral
dictionary, which is adaptively learned for each cluster and
considers the spatial and spectral dimensions together in
an explicit manner. ⊗ is the Kronecker product. Figure 2
illustrates the adaptive spatial-spectral dictionary learning
process.

Afterward, each cubic patch needs to be represented by
a single spatial-spectral dictionary. However, a given cubic
patch can be associated with multiple spatial clusters and as
a result, multiple dictionaries. This is because the bands of
a given cubic patch can be associated with different spatial
clusters. Figure 3, shows an example with two band images

Fig. 3 The two bands from anHSI. The high frequency spatial patterns
in the same locations are different for these two bands and will be
clustered into different clusters

where the same location exhibits different spatial patterns.
To solve this issue, the spatial-spectral dictionary for these
cubic patches are obtained by taking the particular spatial
dictionary for each band’s spatial patch and computing the
Kronecker product with the appropriate row in the spectral
dictionary.

3.2 Local and Non-local Sparse Representation Model

Let vector xi, j ∈ R
P2B denote a cubic patch extracted from

HSI X and centered at the spatial location (i, j),

xi, j = Ri, jX, (6)

where Ri, j ∈ R
P2B×MNB is the matrix extracting patch xi, j

from X. The cubic patches are extracted by shifting over 2D
spatial locations such that we obtain J cubic patches, where
J = (M − P + 1)(N − P + 1). Please note that vector xi, j
can also be obtained by reshaping matrix Zi, j as a vector.

As mentioned previously, the learned adaptive spatial-
spectral dictionary �k ∈ R

BP2×m can be used to sparsely
code cubic patches xi, j , as �kαi, j , when the cubic patch at
location (i, j) belongs to the kth cluster Ck . Given the adap-
tive spatial-spectral dictionary �k , the sparse codes α and
corresponding image X can be recovered by

{α̂, X̂} = argmin
α

‖Y − HX‖22 +
∑

i, j

K∑

k=1

∑

(i, j)∈Ck(
γ ‖xi, j − �kαi, j‖22 + λ‖αi, j‖1

)
,

(7)

where α denotes the concatenation of all αi, j , and α̂ is the
estimation of α. In addition, the cubic patches in an HSI
have rich self-similarity with its neighboring patches (Qian
et al. 2012), which implies the cubic patch can be effectively
described by its neighboring patches. We call this the neigh-
boring non-local self-similarity of the HSI to distinguish it
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from the global non-local self-similarity in Sect. 3.1. In prac-
tice, we employ non-local means to describe the neighboring
non-local self-similarity of theHSI.Thenon-localmeans x̂i, j
can be computed by

x̂i, j =
∑

(p,q)∈Ω i, j

wi, j,p,q xi, j,p,q , (8)

where xi, j,p,q denotes a found similar cubic patch within set
Ω i, j , which represents a large neighborhood around cubic
patch xi, j , and wi, j,p,q is the corresponding weight. Like in
Buades et al. (2005), wi, j,p,q can be set as

wi, j,p,q = 1

W
exp (−‖xi, j − xi, j,p,q‖22/d) (9)

where W is a normalization factor and d is a pre-determined
scalar. Then, we can obtain

xi, j − x̂i, j = xi, j −
∑

(p,q)∈Ω i, j

wi, j,p,q xi, j,p,q

= �k

(
αi, j −

∑

(p,q)∈Ω i, j

wi, j,p,qαi, j,p,q

)

= �k
(
αi, j − θ i, j

)
, (10)

where θ i, j = ∑
(p,q)∈Ω i, j

wi, j,p,qαi, j,p,q is the the sparse

representation of the non-localmeans x̂i, j . Since x̂i, j approx-
imates xi, j , the sparse codes θ i, j of x̂i, j should be similar to
the sparse codes αi, j of xi, j (Qian and Ye 2013). Also, due
to the sparsity of αi, j , (αi, j − θ i, j ) should be sparse enough.
Therefore, we use ‖αi, j −θ i, j‖1 as the non-local sparse con-
straint like Dong et al. (2013). In our method, we add this
non-locally sparse constraint into Eq. (7) as a regularization,

{α̂, X̂} = argmin
α

‖Y − HX‖22 +
∑

i, j

K∑

k=1

∑

(i, j)∈Ck(
γ ‖xi, j −�kαi, j‖22+λ‖αi, j‖1+η‖αi, j −θ i, j‖1

)
.

(11)

We can see that our model in Eq. (11) unifies the local spar-
sity (i.e.‖αi, j‖1) and neighboring non-local self-similarity
induced non-local sparsity (i.e. ‖αi, j − θ i, j‖1) into a varia-
tional formulation. The model also clusters the HSI cubic
patches across the spatial domain to learn the adaptive
spatial-spectral dictionary by considering the global non-
local self-similarity over the entire scene (i.e. the summation∑K

k=1 and �k over the K clusters for the cost function).
Therefore, ourmodel exploits both local andnon-local redun-
dancies across the spatial-spectral domain to restore HSIs.
Note that for convenience and without loss of generality,∑

i, j
∑K

k=1
∑

(i, j)∈Ck
is written as

∑
i, j,k in the following

sections of this paper.

4 Hyperspectral Image Restoration Algorithm

4.1 Determination of Parameters λ and η

We begin by showing that the Bayesian interpretation for our
model (Eq. (11)) provides an explicit way to adaptively set
the parameters λ and η for different clusters and noise levels.
Under the Bayesian framework, the estimation of sparsity
vector α can be cast as a Maximum a Posteriori problem,

α̂ = argmax
α

P(α|Y)

= argmax
α

P(Y|α)P(α)

= argmin
α,β

{− log P(Y|α) − log P(α)},
(12)

where the two terms correspond to the likelihood and prior
terms, respectively. We consider the case where the obser-
vation Y is contaminated with additive Gaussian noise with
standard deviation σn . Thus, P(Y|α) satisfies the Gaussian
distribution i.e. Y = HX + ε1, ε1 ∼ N (0, σ 2

n ) and xi, j =
�kαi, j +ε2, ε2 ∼ N (0, σ 2

n /γ ). The likelihood term P(Y|α)

can be characterized as

P(Y|α) = 1√
2πσn

exp

(
− 1

2σ 2
n

‖Y − HX‖22
)

×
∏

i, j,k

1√
2π/γ σn

exp

(
− γ

2σ 2
n

‖xi, j − �kαi, j‖22
)

.

(13)

Due to the sparsity of αi, j and (αi, j −θ i, j ) by l1-norm, the
Laplace distribution can be used to describe P(α), i.e. αi jl ∼
Laplace

(
0, δkl√

2c1

)
and (αi jl−θi jl) ∼ Laplace

(
0, 
kl√

2c2

)
Thus,

the prior term P(α) in Eq. (12) can be expressed as

P(α) =
∏

i, j,l,k

c1√
2δkl

exp

(
−

√
2c1|αi jl |

δkl

)

c2√
2
kl

exp

(
−

√
2c2|αi jl − θi jl |


kl

)
,

(14)

where αi jl and θi jl are the lth elements of αi, j and θ i, j , and
δkl and 
kl are the standard deviations of αi jl and βi jl when
(i, j) ∈ Ck , l = 1, 2, . . . , P2B. c1 and c2 are predefined
constants. Substituting Eqs. (13) and (14) into Eq. (12), we
obtain

{α̂, X̂} = argmin
α

‖Y − HX‖22 +
∑

i, j,k

(
γ ‖xi, j − �kαi, j‖22+

c1
∑

l

2
√
2σ 2

n

δkl
‖αi jl‖1 + c2

∑

l

2
√
2σ 2

n


kl
‖αi jl − θi jl‖1

)
.

(15)
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Table 1 Denoising results (PSNR(dB)/SSIM/FSIM) of the 10 hyperspectral images from different methods, σn = 20

Img. Metr. Noisy BM3D CSR ANLM BM4D 3DCSR LRTA SDS K-SVD TDL OurBL Ours

PSNR 22.11 36.15 36.12 35.57 39.93 40.01 35.73 36.21 32.51 39.38 39.77 40.81
SSIM 0.2398 0.9397 0.9437 0.9497 0.9644 0.9655 0.8932 0.8711 0.8002 0.9666 0.9625 0.9721

FSIM 0.7539 0.9723 0.9722 0.9747 0.9861 0.9868 0.9599 0.9597 0.9603 0.9883 0.9875 0.9905

PSNR 22.11 30.48 30.35 29.54 34.74 34.64 31.87 34.01 34.70 30.32 35.39 35.95
SSIM 0.4274 0.8404 0.8359 0.8033 0.9282 0.9255 0.8376 0.9046 0.9323 0.8067 0.9370 0.9408

FSIM 0.8894 0.9518 0.9476 0.9342 0.9830 0.9804 0.9639 0.9801 0.9844 0.9634 0.9836 0.9871

PSNR 22.10 38.89 38.82 38.25 41.63 41.60 37.18 36.49 33.98 40.71 41.02 41.97
SSIM 0.1672 0.9383 0.9411 0.9434 0.9588 0.9596 0.8906 0.8592 0.7829 0.9637 0.9512 0.9611

FSIM 0.6977 0.9666 0.9649 0.9733 0.9754 0.9751 0.9436 0.9415 0.9473 0.9832 0.9789 0.9837

PSNR 22.11 37.48 37.73 37.66 40.82 40.97 36.57 37.22 33.87 40.50 40.65 41.21
SSIM 0.1797 0.9284 0.9337 0.9364 0.9523 0.9534 0.8978 0.8696 0.7873 0.9604 0.9505 0.9557

FSIM 0.7469 0.9655 0.9660 0.9701 0.9814 0.9819 0.9624 0.9386 0.9567 0.9850 0.9841 0.9878

PSNR 22.11 36.83 36.82 35.88 39.71 39.69 35.57 34.68 32.58 39.59 39.46 40.26
SSIM 0.2196 0.9384 0.9407 0.9435 0.9606 0.9588 0.8759 0.8516 0.7947 0.9646 0.9520 0.9605

FSIM 0.7543 0.9685 0.9682 0.9720 0.9811 0.9832 0.9521 0.9555 0.9589 0.9844 0.9839 0.9869

PSNR 22.11 39.62 39.66 38.30 41.91 42.05 38.52 37.23 34.28 42.09 42.03 43.20
SSIM 0.1665 0.9390 0.9450 0.9506 0.9563 0.9601 0.9074 0.8376 0.7847 0.9742 0.9608 0.9690

FSIM 0.7130 0.9697 0.9702 0.9693 0.9801 0.9860 0.9632 0.9482 0.9486 0.9874 0.9860 0.9891

PSNR 22.11 33.86 33.82 32.00 36.46 37.01 34.27 34.79 31.77 36.59 37.53 37.93
SSIM 0.2823 0.8679 0.8665 0.8031 0.9205 0.9299 0.8774 0.8626 0.7652 0.9319 0.9373 0.9421

FSIM 0.8138 0.9554 0.9540 0.9389 0.9782 0.9823 0.9593 0.9676 0.9522 0.9810 0.9822 0.9852

PSNR 22.11 36.39 36.30 35.68 38.32 38.21 36.08 33.82 32.66 37.73 38.11 39.07
SSIM 0.2379 0.9106 0.9090 0.9195 0.9367 0.9318 0.8898 0.8749 0.7949 0.9323 0.9317 0.9334

FSIM 0.8340 0.9643 0.9641 0.9712 0.9789 0.9790 0.9643 0.9734 0.9616 0.9819 0.9792 0.9848

PSNR 22.11 37.99 37.99 37.37 40.47 40.55 38.80 36.11 33.77 40.74 40.50 41.56
SSIM 0.1969 0.9294 0.9332 0.9340 0.9491 0.9566 0.9337 0.8576 0.7878 0.9641 0.9534 0.9626

FSIM 0.7634 0.9711 0.9718 0.9764 0.9822 0.9844 0.9801 0.9618 0.9612 0.9880 0.9850 0.9884

PSNR 22.11 33.52 33.41 32.59 36.85 37.55 34.34 34.92 31.47 36.58 37.23 38.07
SSIM 0.3298 0.9118 0.9100 0.9127 0.9496 0.9535 0.8940 0.9021 0.8164 0.9488 0.9530 0.9605

FSIM 0.8538 0.9651 0.9643 0.9648 0.9846 0.9850 0.9730 0.9780 0.9675 0.9863 0.9852 0.9890

Comparing Eqs. (15) and (11), we have

λkl = c1
2
√
2σ 2

n

δkl
, ηkl = c2

2
√
2σ 2

n


kl
. (16)

In Eq. (16), c1 and c2 are set to be the same for different noise
or scaling levels. σn relies on the noise level of the input HSI.
The standard deviations δkl and 
kl for each cluster can be
estimated from the sets of αi jl and (αi jl − θi jl) belonging to
cluster Ck , respectively. In practice, we set γ = 0.3, c1 =
0.3, and c2 = 0.7 for HSI denoising, and γ = 3.2, c1 = 0.2,
and c2 = 1.4 for HSI super-resolution.

4.2 Numerical Algorithm

In Eq. (15), we can see that there are three variables, i.e.
X, α, and θ . α and θ are the concatenation of all αi, j

and θ i, j , respectively. To solve Eq. (15), we derive update

rules for X, α, and θ . We adopt an alternating minimization
scheme to reduce the original problem into simpler sub-
problems.
Update θ We initialize θ i, j to 0, i.e. θ

(0)
i, j = 0, where a(t)

represents the t th iteration of variable a. Then, settingX(0) =
Y for HSI denoising and X(0) as the bicubic interpolator of
degraded HSI Y for HSI super-resolution, the sparse coding
α

(0)
i, j can be obtained by α

(0)
i, j = �T

k x
(0)
i, j . The similar patches

for each local sparse representation α
(1)
i, j are selected from

its neighborhood in terms of the squared difference between
them, i.e. ‖αi, j − αi, j,p,q‖2. Hence the non-local mean θ

(t)
i, j

can be updated by

θ
(t)
i, j =

∑

(p,q)∈Ω i, j

wi, j,p,qα
(t−1)
i, j,p,q . (17)

In the t th iteration, the model can be described as
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Table 2 Denoising results (PSNR(dB)/SSIM/FSIM) of the 10 hyperspectral images from different methods, σn = 40

Img. Metr. Noisy BM3D CSR ANLM BM4D 3DCSR LRTA SDS K-SVD TDL OurBL Ours

PSNR 16.09 32.21 32.14 31.51 35.82 35.78 32.28 29.57 29.02 35.30 35.52 36.59
SSIM 0.1055 0.8778 0.8900 0.8983 0.9105 0.9230 0.8112 0.5617 0.7157 0.9334 0.9172 0.9374

FSIM 0.5624 0.9382 0.9404 0.9513 0.9670 0.9677 0.9223 0.8737 0.9200 0.9717 0.9695 0.9761

PSNR 16.09 27.06 26.97 26.99 30.94 30.88 28.32 27.37 25.90 31.05 31.22 32.08
SSIM 0.1934 0.6968 0.6926 0.6990 0.8483 0.8421 0.7077 0.6649 0.6041 0.8593 0.8638 0.8841

FSIM 0.7643 0.8833 0.8718 0.8775 0.9553 0.9423 0.9146 0.9406 0.8564 0.9634 0.9537 0.9638

PSNR 16.10 35.24 35.40 35.74 37.57 37.63 33.65 29.89 31.30 37.10 37.26 38.39
SSIM 0.0524 0.8781 0.8969 0.9041 0.8959 0.9012 0.8013 0.5236 0.7050 0.9329 0.8983 0.9160

FSIM 0.4917 0.9343 0.9394 0.9504 0.9499 0.9501 0.9078 0.8399 0.9123 0.9631 0.9593 0.9662

PSNR 16.10 34.07 34.09 34.86 37.10 37.08 33.41 29.77 31.17 37.05 37.08 38.06
SSIM 0.0589 0.8714 0.8904 0.9003 0.8961 0.9015 0.8276 0.5186 0.7109 0.9307 0.9025 0.9233

FSIM 0.5511 0.9306 0.9327 0.9519 0.9590 0.9593 0.9231 0.8671 0.9171 0.9664 0.9639 0.9725

PSNR 16.09 33.03 33.17 32.62 35.82 35.91 32.16 29.28 29.25 35.96 35.55 36.46
SSIM 0.0883 0.8801 0.8951 0.9032 0.9106 0.9136 0.7883 0.5616 0.7185 0.9370 0.9032 0.9246

FSIM 0.5643 0.9358 0.9384 0.9509 0.9580 0.9587 0.9128 0.8718 0.9203 0.9674 0.9643 0.9696

PSNR 16.08 35.48 35.68 35.62 38.02 38.21 35.16 29.24 31.33 38.57 38.38 39.77
SSIM 0.0528 0.8735 0.8899 0.8903 0.8858 0.8933 0.8333 0.4646 0.6890 0.9388 0.9108 0.9326

FSIM 0.5047 0.9345 0.9411 0.9457 0.9567 0.9588 0.9342 0.8421 0.8865 0.9702 0.9704 0.9763

PSNR 16.10 30.93 31.11 30.48 33.07 33.08 31.40 28.59 30.49 33.30 34.23 34.84
SSIM 0.1063 0.7760 0.7881 0.7501 0.8417 0.8512 0.8081 0.5780 0.7501 0.8761 0.8837 0.8968

FSIM 0.6328 0.9158 0.9134 0.9207 0.9527 0.9509 0.9223 0.9023 0.9207 0.9563 0.9600 0.9669

PSNR 16.09 33.11 33.43 33.59 35.22 35.42 32.62 28.08 29.63 34.97 34.58 35.71
SSIM 0.0810 0.8607 0.8745 0.8936 0.8961 0.8963 0.8098 0.5547 0.7248 0.8984 0.8760 0.9016

FSIM 0.8340 0.9351 0.9392 0.9583 0.9569 0.9577 0.9322 0.9152 0.9367 0.9650 0.9553 0.9657

PSNR 16.09 34.23 34.45 34.01 36.84 37.01 35.30 29.18 30.75 37.12 36.82 30.10
SSIM 0.0703 0.8668 0.8852 0.8841 0.8873 0.8905 0.8796 0.5117 0.7046 0.9312 0.9065 0.9277

FSIM 0.5690 0.9394 0.9463 0.9540 0.9607 0.9638 0.9607 0.8783 0.9264 0.9731 0.9679 0.9738

PSNR 16.09 29.93 29.83 29.57 32.32 32.26 30.87 28.48 28.06 32.89 33.30 34.21
SSIM 0.1509 0.8416 0.8473 0.8605 0.9087 0.9117 0.8177 0.6230 0.7249 0.9069 0.9040 0.9301

FSIM 0.7034 0.9265 0.9232 0.9363 0.9658 0.9678 0.9418 0.9253 0.9790 0.9663 0.9618 0.9713

Table 3 Denoising results (PSNR(dB)/SSIM/FSIM) on the Columbia Multispectral Image Dataset from different methods and noise levels

σn Metr. Noisy BM3D CSR ANLM BM4D 3DCSR LRTA SDS K-SVD TDL OurBL Ours

10 PSNR 28.13 41.95 42.10 40.77 44.48 44.30 41.11 39.36 36.38 44.28 43.99 44.52

SSIM 0.4567 0.9671 0.9698 0.9622 0.9791 0.9781 0.9491 0.9492 0.8597 0.9807 0.9770 0.9855

FSIM 0.8747 0.9820 0.9840 0.9821 0.9876 0.9880 0.9800 0.9753 0.9690 0.9913 0.9898 0.9930

20 PSNR 22.11 38.25 38.30 37.53 40.83 40.89 37.78 35.93 33.49 40.88 41.02 41.85

SSIM 0.2013 0.9351 0.9382 0.9379 0.9561 0.9578 0.9107 0.8571 0.7911 0.9653 0.9563 0.9678

FSIM 0.7224 0.9637 0.9639 0.9685 0.9744 0.9755 0.9615 0.9421 0.9480 0.9832 0.9752 0.9886

30 PSNR 18.28 36.03 36.33 35.77 38.58 38.61 35.77 32.24 31.81 38.81 38.42 39.45

SSIM 0.1141 0.9039 0.9180 0.9169 0.9295 0.9378 0.8774 0.6920 0.7460 0.9500 0.9380 0.9512

FSIM 0.6087 0.9466 0.9512 0.9564 0.9620 0.9623 0.9457 0.8965 0.9284 0.9742 0.9701 0.9789

40 PSNR 16.09 34.41 34.73 34.51 36.93 37.23 34.32 29.03 30.62 37.32 37.20 38.66

SSIM 0.0742 0.8743 0.8910 0.8938 0.9001 0.9189 0.8458 0.5159 0.9110 0.9341 0.9112 0.9356

FSIM 0.5262 0.9307 0.9359 0.9443 0.9496 0.9546 0.9312 0.8444 0.9105 0.9647 0.9534 0.9698

50 PSNR 14.15 33.49 33.59 33.53 35.64 35.86 33.18 26.40 29.76 36.18 35.77 36.96

SSIM 0.0522 0.8616 0.8780 0.8682 0.8701 0.8901 0.8190 0.3774 0.6828 0.9181 0.9099 0.9222

FSIM 0.4644 0.9215 0.9235 0.9322 0.9377 0.9476 0.9183 0.7914 0.8948 0.9560 0.9457 0.9611
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Fig. 4 Visual quality comparison for theHSI feathers under noise level
σn = 20. The 620 nmband is shown aOriginal ImagesbBM3D (Dabov
et al. 2007) c CSR (Dong et al. 2011) d ANLM (Manjn et al. 2010) e

BM4D (Maggioni et al. 2013) f 3DCSR g LRTA (Renard et al. 2008) h
SDS (Lam et al. 2012) i K-SVD (Aharon et al. 2006) j DNTDL (Peng
et al. 2014) k OurBL l Ours

{α(t),X(t)} = argmin
α,X

‖Y − HX‖22

+
∑

i, j,k

(
γ ‖xi, j − �kαi, j‖22 +

∑

l

λkl‖αi jl‖1

+
∑

l

ηkl
∥∥αi jl − θ

(t)
i jl

∥∥
1

)
.

(18)

Update α For a fixed X, the optimization of the sparse code
α can be described as

α(t) = argmin
α

∑

i, j

(
γ
∥∥x(t−1)

i, j,k − �kαi, j
∥∥2
2+

∑

l

λkl‖αi jl‖1 +
∑

l

ηkl
∥∥αi jl − θ

(t)
i jl

∥∥
1

)
.

(19)

A bi-variate shrinkage algorithm is employed to solve the
function in Eq. (18). In each iteration, we employ an iterative
shrinkage operator to update α for fixed θ . Each element in
α can be calculated as

α
(t)
i jl =

⎧
⎨

⎩
Sτ1,τ2,θi jl (v

(t)
i jl ), θ

(t)
i jl ≥ 0,

−Sτ1,τ2,−θi jl (−v
(t)
i jl ), θ

(t)
i jl < 0.

(20)

where

v
(t)
i, j = α

(t−1)
i, j − 2c�T

k (�kα
(t−1)
i, j − x(t−1)

i, j ), if (i, j) ∈ Ck

(21)

and

τ
(t)
1 = cλ(t)

kl /γ, τ
(t)
2 = cη(t)

kl /γ. (22)

where c is an appropriate step size, subscript l denotes the
lth element in a vector, and v

(t)
i jl denote the lth element in the

v
(t)
i, j . when θi jl ≥ 0,

Sτ1,τ2,θi jl (vi jl) =
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

vi jl + τ1 + τ2, vi jl < −τ1 − τ2,

0, −τ1 − τ2 ≤ vi jl < τ1 − τ2,

vi jl − τ1 + τ2, τ1 − τ2 ≤ vi jl < τ1 − τ2 + θi jl ,

θi jl , τ1−τ2+θi j ≤ vi j < τ1 + τ2 + θi jl ,

vi jl − τ1 − τ2, τ1 + τ2 + θi j ≤ vi jl .

(23)

Technical details of deriving the bi-variate shrinkage operator
Sτ1,τ2,θi jl can be found in Dong et al. (2011). By using this
shrinkage operator, the basis vectors in the dictionary are
adaptively chosen to represent different image data.
Update X In this sub-problem, we fix all other variables and
optimize X by

X(t) = argmin
X

‖Y − HX‖ + γ
∑

i, j,k

∥∥Ri, jX − �kα
(t)
i, j

∥∥2
2.

(24)

123



Int J Comput Vis

Fig. 5 Visual quality comparison for the HSI chart and stuffed toy
under noise level σn = 40. The 600 nmband is shown aOriginal Images
bBM3D (Dabov et al. 2007) cCSR (Dong et al. 2011) dANLM (Manjn

et al. 2010) e BM4D (Maggioni et al. 2013) f 3DCSR g LRTA (Renard
et al. 2008) h SDS (Lam et al. 2012) i K-SVD (Aharon et al. 2006) j
DNTDL (Peng et al. 2014) k OurBL l Ours

(a)

(b)

Fig. 6 Absolute difference between the noise-free spectrum and the
restoration results of pixel (300, 380) in the chart and stuffed toy scene
under σn = 20 and σn = 40 levels of noise

(a) (b)

Fig. 7 Verification of the convergence of our method. Progression of
the PSNR and SSIM for the chart and stuffed toy scene under σn = 20
levels of noise

Algorithm 1: Hyperspectral Image Restoration
Input : A degraded hyperspectral image Y
Output : A restored hyperspectral image X
Initialization: X(0) = Y for HSI denoising, X(0) = bicubic(Y)

for HSI super-resolution, and α
(0)
i, j = �T

k x
(0)
i, j

for t = 1, 2, · · · , T do1

Update spatial dictionary S(t)
k via clustering and PCA;2

Update spectral dictionary U(t) via PCA;3

Update adaptive spatial-spectral dictionary �
(t)
k via Eq. (3) ;4

Update the θ
(t)
i, j via Eqs. (17);5

Compute v
(t)
i, j via Eq. (21);6

Update the regularization parameters λkl , ηkl , τ1, and τ2 via7
Eqs. (16) and (22);
if mod(t, T0) = 0 then8

Compute α
(t)
i, j via shrinkage operator given in Eq. (20);9

Update X(t) for a given set of sparse codes α
(t)
i, j by solving10

Eq. (24);
end11

end12

Equation (24) is a quadratic minimization problem and thus
can be solved in closed-form, i.e.,

X(t) =
(
HTH + γ

∑

i, j,k

RT
i, jRi, j

)−1

(
HTY + γ

∑

i, j,k

RT
i, j�kα

(t)
i, j

)
.

(25)

In our implementation, we use the conjugate gradient algo-
rithm to compute Eq. (25).

From the above discussion, we can see that non-local
self-similarity θ , latent HSI X, and the sparse coding α are
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Fig. 8 Visual quality comparison for the real HSI. The 600 nm band
is shown a Original Images b BM3D (Dabov et al. 2007) c CSR (Dong
et al. 2011) d ANLM (Manjn et al. 2010) e BM4D (Maggioni et al.

2013) f 3DCSR g LRTA (Renard et al. 2008) h SDS (Lam et al. 2012)
i K-SVD (Aharon et al. 2006) j DNTDL (Peng et al. 2014) k OurBL l
Ours

alternatingly updated in Eq. (11). During the iterations, the
accuracy of sparse code α(t) is improved, which in turn,
improves the accuracy of non-local self-similarity θ (t). The
clustered similarity patches in the HSI across the spatial
domain and the dictionary �k are also updated in terms of
the updated α(t). After several iterations, the algorithm con-
verges and the desired sparse code α and latent HSI X can
be obtained. The proposed HSI restoration algorithm is sum-
marized in Algorithm 1.

5 Experimental Results

In this section, extensive experiments are presented to eval-
uate the performance of the proposed method. We first apply
our method to HSI denoising and compare with 8 state-of-
the-art methods. Then, our method is also applied to HSI
super-resolution. Finally, we show that our method can be
widely used for multi-channel images and improve image
restoration results.

In our implementation, if not specifically stated, the size
of the cubic patches is 7 × 7 × B, the size of the window
for searching similar patches is 50 × 50, the number of best
matched patches is 16, and the number of clusters is 50. We
employ PSNR, SSIM (Wang et al. 2004), and FSIM (Zhang
et al. 2011) to evaluate the quality of the restored HSI.

5.1 Hyperspectral Image Denoising

We first selected 10 HSIs1 from the Columbia Multispec-
tral Image Database (Yasuma et al. 2008) to test our method
under different noise levels. To demonstrate the effective-

1 Due to space limitations, we chose 10 typical and complex scenes to
test our method.

ness of the proposed algorithm, we compared our denoising
results with 8 recently developed state-of-the-art denoising
methods, including band-wise BM3D (Dabov et al. 2007)
(BM3D), band-wise centralized sparse representation (CSR)
(Dong et al. 2011), adaptive non-local means denoising for
volumetric data (ANLM) (Manjn et al. 2010), non-local
transform domain filter for volumetric data (BM4D) (Mag-
gioni et al. 2013), low rank tensor approximation (LRTA)
(Renard et al. 2008), spectral domain statistics based method
(SDS) (Lam et al. 2012), 3D-cube K-SVD (Aharon et al.
2006) and decomposable non-local tensor dictionary learn-
ing (DNTDL) (Peng et al. 2014). All parameters involved in
the competing algorithms were optimally assigned or auto-
matically chosen as described in the reference papers. To
sufficiently compare with the CSRmethod, we also extended
the CSR method to 3DCSR, where the cubic patches are
stacked into long vectors. To show the influence of the
number of the clusters on denoising performance, we also
implemented our method with a single universal dictio-
nary by setting the number of clusters to one, denoted as
OurBL.

In Tables 1 and 2, we provide the PSNR, SSIM, and FSIM
results obtained from various methods for each HSI under
different noise levels. We can see that the best result for each
set is highlighted in bold. The proposed method outperforms
other competitive approaches in most cases and achieves
state-of-the-art denoising performance in terms of PSNR,
SSIM, and FSIM. Comparing our method with OurBL, we
see that ourmethod can produce better results, which demon-
strates that the proposed adaptive dictionary learning in Sect.
3.1, which captures the characteristics of the scene, can effec-
tively improve the denoising results. We also show more
noise levels in terms of the average performance across all
images in Table 3.
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Table 4 PSNR (dB), SSIM and FSIM results of the super-resolution hyperspectral image by averaging over all channels under different scaling
factors and noise levels

Img. Metrics Noiseless Noise σn = 2

Scale=2 Scale=3 Scale=2 Scale=3

PSNR 34.23 35.00 31.79 32.55 32.30 33.21 30.38 31.13
SSIM 0.9657 0.9714 0.9439 0.9515 0.9160 0.9237 0.9058 0.9177

FSIM 0.9611 0.9684 0.9367 0.9413 0.9214 0.9273 0.9037 0.9123

PSNR 31.69 32.58 28.02 29.22 29.30 30.25 27.38 28.33
SSIM 0.9079 0.9299 0.8132 0.8315 0.8427 0.8675 0.7801 0.8012

FSIM 0.9354 0.9468 0.8705 0.8837 0.8923 0.9043 0.8536 0.8636

PSNR 43.78 44.38 41.94 42.86 38.64 39.67 38.41 38.28
SSIM 0.9826 0.9860 0.9767 0.9794 0.9262 0.9333 0.9336 0.9401

FSIM 0.9841 0.9887 0.9771 0.9821 0.9204 0.9279 0.9369 0.9407

PSNR 39.95 40.42 37.86 38.43 36.54 37.12 35.99 36.57
SSIM 0.9750 0.9795 0.9661 0.9698 0.9213 0.9280 0.9297 0.9352

FSIM 0.9985 0.9990 0.9958 0.9962 0.9779 0.9795 0.9776 0.9796

PSNR 38.44 39.02 34.85 35.46 35.37 35.94 33.41 34.42
SSIM 0.9818 0.9858 0.9667 0.9735 0.9287 0.9327 0.9305 0.9377

FSIM 0.9977 0.9980 0.9886 0.9897 0.9776 0.9792 0.9719 0.9786

PSNR 45.55 46.24 42.95 43.66 41.25 41.88 40.24 41.09
SSIM 0.9932 0.9946 0.9891 0.9902 0.9398 0.9410 0.9396 0.9425

FSIM 0.9909 0.9931 0.9819 0.9852 0.9398 0.9450 0.9337 0.9403

PSNR 31.53 31.67 30.96 31.27 30.32 30.58 30.23 30.53
SSIM 0.7624 0.7803 0.7394 0.7586 0.7185 0.7235 0.7131 0.7222

FSIM 0.8669 0.8893 0.8455 0.8679 0.8673 0.8888 0.8457 0.8663

PSNR 42.02 43.09 40.80 41.78 38.57 39.65 37.90 38.98
SSIM 0.9621 0.9715 0.9513 0.9611 0.9208 0.9312 0.9187 0.9292

FSIM 0.9778 0.9855 0.9690 0.9773 0.9591 0.9677 0.9538 0.9622

PSNR 37.24 37.90 33.89 34.53 35.03 35.72 33.18 33.86
SSIM 0.9435 0.9525 0.9092 0.9172 0.8995 0.9112 0.8878 0.8963

FSIM 0.9623 0.9698 0.9296 0.9352 0.9356 0.9411 0.9208 0.9276

PSNR 33.74 34.30 30.09 30.91 30.94 31.63 29.17 29.78
SSIM 0.9403 0.9506 0.8808 0.9020 0.8844 0.8943 0.8508 0.8613

FSIM 0.9523 0.9605 0.9011 0.9178 0.9164 0.9243 0.8861 0.8989

For each case, the first column shows the results from Dong et al. (2013), and the second column from our method

To visually illustrate the denoising performance of our
method, we show two denoised hyperspectral bands from
different methods under different levels of noise in Figs. 4
and 5. When the noise level is not very high (σn=20), as
shown in Fig. 4, all the competing methods achieve good
denoising outputs, but when we enlarge the images and com-
pare the details demarcated in Fig. 4a. We can see that our
method recovers nice texture/edge features with rich details.
When the noise level is high (σn = 40), as shown in Fig. 5,

LRTA (Renard et al. 2008), and SDS (Lam et al. 2012), and
3D-cube K-SVD (Aharon et al. 2006) tend to generate many
visual artifacts. BM3D (Dabov et al. 2007), CSR (Dong et al.
2011), ANLM (Manjn et al. 2010), BM4D (Maggioni et al.
2013), and 3DCSR are overly smooth and show many block
artifacts. DNTDL (Peng et al. 2014) and our method work
better in this case. Comparing these two methods in detail,
the denoised image (Fig. 5l) by our method has much less
artifacts than other methods, and is visually more appealing.
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The restoration errors across spectra are shown in Fig. 6.
The absolute differences in the spectral distributions between
the noise-free spectrum and the restoration results of all com-
petingmethods at pixel (300, 380) in the chart and stuffed toy
scene (the same scene in Fig. 5) under σn = 20 and σn = 40
are shown. It is easy to see that our method obtains the best
approximation of the true spectral distributions of the original
HSI, which is in accordance with our quantitative evaluation.

In addition, we also take the case of HSI denoising when
σn = 20 for the chart and stuffed toy scene as an example to
show the convergence of our method. Figure 7 plots the eval-
uations of PSNR and SSIM versus iteration numbers for the
tested HSI. We can see that both the PSNR and SSIM curves
increase monotonically and demonstrate the convergence of
our method.

To further demonstrate the denoising performance of our
method, we also tested our method on a real HSI, which is
an eye fundus that was captured from 500 to 720 nm at 10
nm intervals. This HSI contains 23 bands of size 256× 320.
We illustrate the experimental results of an example image
located at 600 nm in Fig. 8. To clearly show the experimen-
tal results, a part of the image is enlarged for all restored
images from all competing methods. We can see that our
method effectively removes the noise and properly preserves
the underlying structure of the image, while most of the other
competing methods make the image blurry or overly sharp
as compared with the original image.

5.2 Hyperspectral Image Super-Resolution

We designed a general model for HSI restoration so that
it could be applied to more than just denoising. We now
apply our model to HSI super-resolution. Most recent HSI
super-resolution methods require extra images such as mul-
tiple frames (Akgun et al. 2005; Buttingsrud and Alsberg
2006; Chan et al. 2010; Zhang et al. 2012), a high-resolution
mono-band image (Eismann and Hardie 2004, 2005; Chen
et al. 2014; Zhao et al. 2011), or an RGB image (Ma et al.
2013). In our method, we achieve HSI super-resolution on
low resolution HSI without the need for additional informa-
tion. We do not compare against previous methods, since the
inputs are vastly different and comparisons would be unfair.
In our experiments, we compare our method with Dong et al.
(2013), which used similar constraints to our method, but
was designed for grayscale images and did not consider the
correlation across spectra.

Since our method is based on adaptive spatial-spectral
dictionary learning, it can be easily incorporated into most
models that utilize sparse representations with different con-
straints. Here, we mainly show the extensibility of our model
to different HSI restoration problems and also the importance
of considering correlation in the spectral domain.

Fig. 9 Reconstructed super-resolution images for the low resolution
images. Four scenes are shown at 620 nm. From top to bottom original
high resolution image; low resolution images; reconstructed super-
resolution images by (Dong et al. 2013) for each channel separately;
reconstructed super-resolution images by ourmethod. From left to right:
scaling factor 2 and σn = 0; scaling factor 2 and σn = 2; scaling factor
3 and σn = 0; scaling factor 3 and σn = 2 a Original high resolu-
tion images b Low resolution images c Reconstructed super-resolution
images by Dong et al. (2013) d Reconstructed super-resolution images
by our method

We first simulated low resolution images (e.g. Fig. 9b)
by blurring high resolution images with a 7 × 7 Gaussian
kernel with standard deviation 1.6, and then downsampled
the blurred images by a scaling factor of 2 or 3 in both the
horizontal and vertical directions. To make the HSI super-
resolution problem more challenging, additive Gaussian
noise of standard deviation 2 was also added to the low res-
olution images.

Table 4 shows that PSNR (dB), SSIM, and FSIM results of
the super-resolution hyperspectral image by averaging over
all channels under different scaling factors and noise levels.
For each case, the first column shows the results from Dong
et al. (2013), and the second column from our method. We
can see that our method outperforms the image restoration
method in Dong et al. (2013) in PSNR, SSIM, and FSIM.
It demonstrates that our method, which is based on adaptive
spatial-spectral dictionary learning effectively improves the
quality of restored results by considering the high correla-
tion across spectra. Visual comparisons between Dong et al.
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Fig. 10 Effects of high correlation across bands on the Butterfly scene.
a Original image, from left to right RGB image, R channel, G chan-
nel and B channel. b The corresponding noise images (σn = 20) for
each channel. c The denoised images for each channel separately. R
channel: PSNR = 29.94, SSIM = 0.9368, FSIM = 0.9396. G channel:
PSNR = 29.91, SSIM = 0.9315, FSIM = 0.9317. B channel: PSNR =
29.60, SSIM =0.8942, FSIM = 0.9246. d The denoised images from
our method that considers the high correlation across spectra. R chan-
nel: PSNR= 31.74, SSIM= 0.9528, FSIM = 0.9516. G channel: PSNR
= 31.82, SSIM = 0.9472, FSIM = 0.9418. B channel: PSNR = 31.12,
SSIM = 0.9241, FSIM = 0.9446

(2013) and our method are shown in Fig. 9. Our method
reconstructs better visual high resolution results, especially
for the textured/edge parts.

5.3 Applicability to Multi-channel Image Restoration

We have so far applied our method to HSI denoising and
super-resolution. One of the benefits of our method is that it
considers correlation in the spectral domain. In this section,
we show that multi-band images such as RGB images also
benefit from our method.

Most image restorationmethods for RGB images only pay
attention to the intensity channel (the gray image) or restore
each channel separately.We apply ourmethod to all channels
together, each channel separately, and compare their denois-
ing and super-resolution results. In addition, we also apply
our method in YUV space for RGB image super-resolution,

Fig. 11 Effects of high correlation across bands on theFlower scene. a
Original image, from left to right RGB image, R channel, G channel and
B channel. b The corresponding low-resolution images (scale = 2, σn =
0) for each channel. cThe super-resolution images on theYUV space by
apply the super-resolutionmethod to theYcomponent and using bicubic
interpolation for UV components. R channel: PSNR = 29.90, SSIM =
0.8901, FSIM = 0.9235. G channel: PSNR = 30.03, SSIM = 0.8946,
FSIM = 0.9236. B channel: PSNR = 29.71, SSIM = 0.8863, FSIM =
0.9231. d The super-resolution images for each channel separately. R
channel: PSNR = 30.48, SSIM = 0.9021, FSIM = 0.9303. G channel:
PSNR = 30.45, SSIM = 0.9043, FSIM = 0.9306. B channel: PSNR =
30.60, SSIM = 0.9023, FSIM=0.9324. e The super-resolution images
from our method that considers the high correlation across spectra. R
channel: PSNR = 31.36, SSIM = 0.9209, FSIM = 0.9431. G channel:
PSNR = 31.17, SSIM = 0.9195, FSIM = 0.9412. B channel: PSNR =
31.30, SSIM = 0.9174, FSIM = 0.9436

i.e. performing our method only on the intensity channel Y,
and using bicubic interpolation for the U and V channels.

Figures 10 and 11 show the effects of correlation across
bands in image denoising and super-resolution. In Fig. 10, the
visual quality of the denoising results for theButterfly scene is
shown.Each channel in the original image (Fig. 10a) is noised
using Gaussian noise with σn = 20 (Fig. 10b). Comparing
the denoised results from processing each channel separately
(Fig. 10c) with our method (Fig. 10d), it is apparent that both
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Table 5 PSNR (dB), SSIM and FSIM results of the restored image under different noise levels and scaling factors

Img. Metrics Denoising Super-resolution, scale = 2

σn = 20 σn = 30 σn = 40 Noiseless Noise, σn = 2

PSNR 28.32 30.61 25.98 28.18 24.34 26.52 25.59 26.03 26.64 24.42 24.64 25.35
SSIM 0.8799 0.9270 0.8182 0.8839 0.7888 0.8449 0.8578 0.8712 0.8897 0.8040 0.8228 0.8345

FSIM 0.9202 0.9478 0.8842 0.9206 0.8505 0.8975 0.8959 0.9028 0.9144 0.8641 0.8737 0.8856

PSNR 29.82 31.56 27.80 29.41 26.06 27.47 28.72 29.42 30.02 27.00 27.32 28.01
SSIM 0.9209 0.9414 0.8914 0.9183 0.8590 0.8855 0.9281 0.9382 0.9466 0.8756 0.9018 0.9133

FSIM 0.9320 0.9460 0.9102 0.9231 0.8772 0.8855 0.9251 0.9332 0.9398 0.8747 0.8970 0.9120

PSNR 30.05 32.34 27.89 30.11 26.37 28.47 29.88 30.51 31.28 28.58 28.90 29.65
SSIM 0.8711 0.9229 0.8141 0.8842 0.7629 0.8454 0.8903 0.9029 0.9193 0.8404 0.8625 0.8804

FSIM 0.9160 0.9475 0.8831 0.9237 0.8526 0.9007 0.9234 0.9311 0.9426 0.8963 0.9079 0.9193

PSNR 29.95 30.88 28.83 29.73 28.07 28.94 31.12 31.59 31.85 30.38 30.63 30.95
SSIM 0.7208 0.7833 0.6682 0.7264 0.6305 0.6839 0.7779 0.7957 0.8098 0.7436 0.7522 0.7579

FSIM 0.8618 0.9010 0.8324 0.8733 0.8066 0.8457 0.9004 0.9120 0.9226 0.8919 0.8869 0.9013

PSNR 31.58 33.17 29.69 31.16 28.39 29.64 31.05 31.70 32.20 30.00 30.21 30.83
SSIM 0.8665 0.9024 0.8187 0.8632 0.7809 0.8258 0.8933 0.8887 0.9002 0.8253 0.8458 0.8604

FSIM 0.9020 0.9256 0.8684 0.8995 0.8370 0.8717 0.9138 0.9218 0.9317 0.8864 0.8979 0.9131

PSNR 30.26 32.18 27.97 29.81 26.00 27.86 27.96 29.70 30.27 26.68 26.64 27.55
SSIM 0.9571 0.9714 0.9342 0.9530 0.9047 0.9271 0.9512 0.9661 0.9708 0.9151 0.9309 0.9444

FSIM 0.9472 0.9594 0.9283 0.9374 0.8998 0.9060 0.9334 0.9497 0.9555 0.8854 0.9080 0.9141

PSNR 32.31 33.87 30.38 31.91 28.93 30.47 31.12 31.83 32.42 29.92 30.17 30.98
SSIM 0.8947 0.9155 0.8660 0.8898 0.8443 0.8705 0.9178 0.9329 0.9411 0.8827 0.8974 0.9164

FSIM 0.9367 0.9502 0.9198 0.9355 0.9061 0.9239 0.9514 0.9579 0.9640 0.9300 0.9415 0.9483

PSNR 32.73 33.02 30.65 31.01 29.12 29.63 31.43 34.73 35.08 30.70 32.05 32.58
SSIM 0.8623 0.8691 0.8129 0.8171 0.7886 0.7898 0.8692 0.9381 0.9445 0.8473 0.8623 0.8701

FSIM 0.9088 0.9164 0.8777 0.8866 0.8486 0.8632 0.9060 0.9473 0.9528 0.8929 0.9047 0.9101

PSNR 29.04 31.54 27.39 29.57 26.32 28.27 29.59 29.84 30.61 28.25 28.67 28.43
SSIM 0.7760 0.8751 0.6939 0.8090 0.6294 0.7523 0.8286 0.8396 0.8706 0.7724 0.7833 0.8178

FSIM 0.8701 0.9279 0.8283 0.8941 0.7918 0.8679 0.9051 0.9091 0.9269 0.8851 0.8835 0.8988

For the denoising problem, the first column shows the results from denoising each channel separately and the second column from our method.
For the super-resolution problem, the first column shows the results by applying the method in YUV space, the second column from restoring each
channel separately in RGB space, and the third column from our method

methods generate good results in the smooth regions, but we
can see that our method obtains much better results in the
textured/edge regions. This demonstrates that the quality of
the restored image can be effectively improved by using the
correlation across bands.

By using our method on RGB image super-resolution,
Fig. 11 further demonstrates that our method (Fig. 11e)
obtains much better restoration results in the textured/edge
regions, compared with performing super-resolution on
intensity channelYonly (Fig. 11c) or each channel separately
(Fig. 11d). Thus exploiting the correlation across bands also
provides better super-resolution results for RGB images.

PSNR, SSIM, and FSIM results on 9 RGB images are
shown in Table 5. From Table 5, we can see that our method
outperforms restoring for each channel separately or only by
applying it to the intensity channel. Thus exploiting the high
correlation across spectra provides better RGB restoration
results.

6 Conclusion

In this paper, we presented an effective HSI restoration
method based on adaptive spatial-spectral dictionary learn-
ing, which considered the underlying characteristics of
HSIs: the sparsity across the spatial-spectral domain, the
high correlation across spectra, and non-local self-similarity
over space. We exploited the high correlation across spec-
tra and non-local self-similarity over space to learn the
adaptive spatial-spectral dictionary for each overlapping
cubic patch of the HSI. By design, each adaptive spatial-
spectral dictionary could sparsely represent its own cubic
patch across spatial and spectral domains while sharing fea-
tures with other similar non-local patches across the full
HSI. Then, the local and non-local sparsity of the HSI
was used to design a HSI restoration model under the
trained dictionary. This model was effectively solved by
our numerical algorithm with its regularization parameters
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adaptively adjusted for different clusters and different noise
levels.

The experimental results onHSIdenoising showed that the
proposed method outperformed many state-of-the-art meth-
ods under several comprehensive quantitative assessments.
We also demonstrated our method in super-resolution for
HSIs and showed that our method restores high resolution
images well, especially for detailed parts.While not the main
aim of this paper, we also showed that our approach can be
applied tomulti-band images such asRGBwith better results.

We presented a general model that was applied to HSI
denoising and super-resolution. Despite its effectiveness, it
still has some limitations. For example, we did not consider
the complexity of mixing different kinds of noise for denois-
ing (Zhao et al. 2015). For super-resolution, the option to use
extra information from multiple frames (Zhang et al. 2012),
or a high-resolution mono-band image (Chen et al. 2014)
could also be beneficial. In addition, since the spatial-spectral
basis can be effectively used for HSI reconstruction from
raw data, e.g. extended Bayer filter (Monno et al. 2013), it is
worth investigating how we can extend our adaptive spatial-
spectral dictionary learning to HSI reconstruction from raw
data. In the future, we will investigate these directions and
design possible extensions to our model that are specifically
adapted for each case to achieve improved empirical results.
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