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Abstract

Hyperspectral imaging has proven useful in a di-
verse range of applications in agriculture, diagnostic
medicine, and surveillance to name a few. However,
conventional hyperspectral images (HSIs) tend to be
noisy due to limited light in individual bands; thus mak-
ing denoising necessary. Previous methods for HSI de-
noising have viewed the entire HSI as a general 3D
volume or focused on processing the spatial domain.
However, past findings suggest that spectral distribu-
tions exhibit less variation than spatial patterns. Hence
it would be fruitful to take specific advantage of the
more predictable behavior of spectral domain data for
denoising. In this paper, we present a two-stage de-
noising framework that first emphasizes denoising in the
spectral domain and then uses spatial information to
further improve spectral domain denoising. Our results
indicate that specifically leveraging the spectral domain
for denoising can provide state-of-the-art performance
even from a relatively simple approach.

1 Introduction

Hyperspectral imaging is the process of capturing
images of a scene over multiple bands of the electro-
magnetic spectrum. When captured, a hyperspectral
image (HSI) can be thought of as a set of 2D spa-
tially organized “pixels” where each pixel contains an
entire spectral distribution over wavelengths. This al-
lows us to see the spectral distribution of any given sur-
face point in a scene and has lead to numerous applica-
tions in agriculture, diagnostic medicine, surveillance,
and more. However, conventional hyperspectral imag-
ing suffers from limited light in individual bands which
introduces noise into the imaging process.

In this paper, we present a simple but effective de-
noising method that exploits the spectral domain statis-

(a) Noisy (SNR 1.38) (b) Denoised (SNR
20.23)

Figure 1: Sample denoising result at 500 nm.

tics present in all HSIs. This is in contrast to past ap-
proaches that treat HSIs as generic 3D volumes or fo-
cus primarily on the spatial domain. For example, in
[12], the HSI was treated as a generic 3D volume. The
algorithm is general but performance is limited since
specific HSI characteristics are not taken advantage of.
Later approaches [2, 4, 7] independently process homo-
geneous spatial subregions. However, this approach is
computationally expensive and does not consider global
scene statistics. Also, the typical use of rectangular spa-
tial subregions may not be ideally suited to all scenes.
We note that methods such as [13] produce arbitrarily
shaped subregions. However, specific HSI characteris-
tics are also not leveraged.

Other methods [1, 3, 10] process HSIs globally while
treating the spatial and spectral domain as separable.
Specifically, [1] decorrelates the spectral and spatial do-
mains and then denoises via wavelet thresholding. A
drawback is that the noise variance for each decorre-
lated spectral band needs to be estimated. In both [3]
and [10], the spatial and spectral domains are denoised
separately. Their common drawback is that each of the
spectra are denoised independently so spectral domain
statistics are not leveraged. Indeed, the past and re-
cent methods discussed do not take full advantage of
the wealth of information in the spectral domain.
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Figure 2: Overview of our HSI Denoising Framework

2 Denoising with the Spectral Domain

Our emphasis on the spectral domain is motivated
by the fact that the spectral domain exhibits much less
variation in terms of patterns than the spatial domain.
To see why, we first note it is well known that large
sets of spectra consisting of natural scenes or extensive
color samples can be represented compactly in just 6-8
principal components [6, 8, 9, 11]. On the other hand,
a simple test on the UEA Multispectral Dataset [5] re-
veals that 1,260 random 10x10 spatial patches require
29 principal components to capture 99% of the variance.
The requirement of a much higher number of principal
components for spatial patches indicates the more com-
plex nature of the spatial domain. Thus our intuition is
that noise is more easily separated from the less varied
and better understood patterns in the spectral domain.

Having noted the complex nature of spatial patches,
we point out that the spatial domain of a single HSI
can be more compactly represented if entire band im-
ages are treated as individual patches.1 In that case, we
have found that only six principal components are typi-
cally required. However, we will show that even this ap-
proach (spatial PCA) to analyzing HSIs still underper-
forms in comparison to our spectral domain approach.

Another advantage of the spectral domain is that typ-
ical HSIs contain an overwhelming number of samples
in the spectral domain. For example, a 256x256 scene
would contain 65,536 spectra. We find this makes it
possible to robustly separate true signals from noise by
only analyzing the noisy image in question.

1We found that 100 random 10x10 patches of a single HSI, would
still require a high number of principal components.

2.1 Overview

We now present an overview of our method. We aim
to fully exploit the favorable conditions of the spectral
domain while incorporating spatial information. This
is accomplished by first building a low-noise spectral
domain basis from the noisy HSI via PCA. The noisy
HSI’s spectra are then projected onto the basis to obtain
coefficients. We then additionally denoise the coeffi-
cients using spatial information. The HSI can then be
recovered via backprojection. See Fig. 2 for an visual-
ization of our framework.

2.2 Low-Noise Basis from High-Noise Images

One of the main advantages of the spectral domain
over the spatial domain is the computation of low-noise
basis vectors even from very noisy HSIs. This is be-
cause of the two main characteristics of spectral domain
data mentioned earlier. Spectral distributions can be
very compactly represented and there is an overwhelm-
ingly large number of spectra (e.g. over 65,000) in a
typical HSI. As we also expect noise to occur randomly,
the impact of noise on the greatest directions of variance
in the large set of spectra in an HSI should be minimal.
Thus PCA can be used to obtain low-noise top basis
vectors even when noise is high.2 Using the low-noise
basis, one could arrange all the noisy HSI’s spectra as a
column vector R and denoise as follows:

RD = BBT(R−M) +M = BC+M (1)

where B is the column matrix of basis vectors, M is a
matrix with each column consisting of the HSI’s empir-
ical mean spectral distribution, and C are the basis co-
efficients. RD is the matrix of denoised spectra which
can be rearranged to recover the HSI band images.

2Validation of our claim is shown in the experiments.
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2.3 Incorporating Spatial Information and
Recovering the Denoised Image

Projection onto the low-noise basis removes signifi-
cant noise. However, noise would still be present in co-
efficients C as some noisy spectra can exist in the space
spanned by the basis. Fortunately, spatial information
can be used to denoise coefficients. This is because the
spatial relationship between scene points carry over to
the spatial relationships between the points’ spectral do-
main coefficients. Thus spatially arranging coefficients
into a set of 2D spectral coefficient images (SCIs)3 ex-
hibit spatial components of the scene. This suggests
that each SCI could be independently denoised using
off-the-shelf 2D spatial denoisers.

However, is it reasonable to independently process
each SCI? The nature of PCA indicates the answer is
yes. PCA produces basis vectors that are orthogonal
to each other. So changes in one SCI do not affect the
other components of the spectra. Thus each SCI can
be processed independently while still enforcing con-
straints over all wavelengths.

In our paper, we chose to use the bilateral filter [14]
to denoise SCIs. Briefly, the bilateral filter is applied to
each coefficient at location (x,y) in SCI S as

SD(x, y) = k−1x,y

∑
(i,j)∈N

S(i, j)
(
Gs

(
i− x, j − y

)
Gr

(
S(i, j)− S(x, y)

))
(2)

where kx,y is a normalization factor, N is the neighbor-
hood of pixels around and including (x,y), Gs is a 2D
Gaussian function centered at (0,0) with standard devi-
ation σs for both dimensions, and Gr is a 1D Gaussian
function centered at 0 with standard deviation σr. Due
to the spatial structure in SCIs, we have found the edge
preserving capabilities of the bilateral filter provides ex-
cellent denoising of coefficients. Once denoised, the co-
efficients can be used in Eq. 1 to fully denoise the HSI.

3 Experiments

3.1 Experimental Setup

We use the UEA Multispectral Image Database [5]
for our tests. This database contains images of everyday
objects captured from 400 - 700 nm in increments of 10
nm under CIE illuminant D75. In our experiments, we
use 20 objects from the database.

3One SCI for each basis vector.

For our first set of experiments on comparing the
computation of basis vectors in the spectral versus the
spatial domain, we use the percent error between two
vectors ~a and~b defined as

Perror =

(
‖~a−~b‖
‖~a‖

)
× 100% (3)

where ‖ · ‖ denotes the norm of the vector.
As in past HSI denoising work [3], we compute SNR

as

SNR =

∑
i,j,k A(i, j, k)

2∑
i,j,k[A(i, j, k)−B(i, j, k)]2

(4)

where A is the clean HSI and B is the noisy HSI.
As is commonly done in the literature, we added

white Gaussian noise to our HSIs. For noise variance,
we set σ values to 3%, 5%, 10%, and 20% of the dy-
namic range of each HSI being noised.

3.2 Methods Compared Against

Our method is compared against denoising using
spatial PCA and spectral PCA. We also compared
against Chen and Qian (CQ) [3] and Atkinson et al.
(AKJ) [1]. Both CQ and AKJ work with the spatial
and spectral domains but do not take full advantage of
spectral domain statistics. We also tried spectral PCA
followed by denoising each band image independently.
4 We call the last method Spectral PCA + Independent
Band Denoising (IBD).

3.3 Experimental Results

Spatial Domain Eigenvector #
Ave
SNR 1 2 3 4 5 6

47.2 3% 8% 18% 26% 29% 44%
17.0 15% 70% 126% 121% 133% 127%
4.3 29% 122% 140% 135% 133% 129%
1.0 59% 147% 135% 137% 140% 138%

Spectral Domain Eigenvector #
Ave SNR 1 2 3 4

47.2 0.03% 0.07% 0.17% 11%
17.0 0.1% 0.4% 1% 14%
4.3 0.3% 0.8% 2.5% 44%
1.0 0.6% 22% 27% 94%

Table 1: Mean Percent Errors Between Eigenvectors
from Noisy and Clean HSIs

4We note that the bilateral filter is used in both independent band
image denoising and SCI denoising where the window size is set to
be 3x3, the spatial sigma is 1x1, and the range sigma is 5% of the
dynamic range of all the SCIs.
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Noisy Ours (4) Spatial PCA (3) Spatial PCA (6) Spectral PCA (4) CQ (3) AKJ Spectral PCA (4) +
IBD

47.2 203.5 146.1 166.7 159.6 145.4 46.8 211.8
17.0 165.6 84.0 68.8 88.6 83.9 17.0 149.3
4.3 69.5 28.7 18.3 29.2 28.7 4.3 50.8
1.0 13.2 7.9 4.6 7.9 7.9 1.2 11.3

Table 2: Mean SNR results. Parenthesis show number of top eigenvectors. IBD means Independent Band Denoising.

Figure 3: Sample denoising result using our method.
The 400 nm band is shown.

We first present results to validate our claim in
Sec. 2.2. Table 1 compares the similarity between
eigenvectors computed from noisy HSIs and counter-
parts from the noise-free case. The number of eigen-
vectors were chosen to capture 99% of the variance in
the noise-free case. The low errors for the spectral do-
main eigenvectors indicates the low amount of noise in
them. Also note that error rates only increase for lower
ranked eigenvectors. This is fortunate as lower ranked
eigenvectors are less important in data reconstruction.

Table 2 shows a comparison of our method against
others. For CQ, the best number of eigenvectors was
determined manually. Our use of the spectral domain
resulted in the best performance. Interestingly, Spectral
PCA + IBD performed slightly better than our method
in the first row. This is likely because the benefits of
our enforcing joint constraints over wavelengths is less
important at low noise. However, Spectral PCA + IBD
is slow since all 31 band images are processed rather
than four SCIs in our method. A visual result of our
method from Table 2’s second row is in Fig 3.

4 Conclusion

By taking advantage of the well-behaved nature of
spectra and the overwhelmingly large number of spec-
tra found in HSIs, we were able to show robust perfor-
mance over a wide range of noise levels. In the future,
we hope to explore other decompositions besides PCA
and also non-local approaches to SCI denoising.
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