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Abstract- Neural networks are used to predict the drape 
coemcient (DC) and circularity (CIR) of many different kinds 
of fabrics. The neural network models used were the Multilayer 
Perceptron using Backpropagation (BP) and the Radial Basis 
Function (RBF) neural network. The BP method was found to 
be more effective than the RBF method but the RBF method 
was the fastest when it came to training. Comparisons of the 
two models as well ss comparisons of the same models using 
different parameters are presented. It was also found that 
prediction for CIR was less accurate than for DC for both 
neural network architectures. 

Index Terms-Backpropagation, Fabric Drape, Radial Basis 
Function. 

1. INTRODUCTION 

Drape is the most important of fabric properties for 
the apparel textile industry and some industrial textile 
applications. This unique fabric property is very complex 
and it is very beneficial to predict the drape of fabric for 
computer aided design and manufacturing. Drape prediction 
can reduce the need for fabric sample production and thus 
speed up the process of designing new fabrics. As a result of 
this, production cost will decrease and production time will 
shrink. Drape prediction has been one of the biggest 
challenges to the textile industry for many years. Many 
scientists have been trying to predict how fabric drapes over 
rigid surfaces, using both empirical and other methods. In 
this study, we use neural networks as a tool to predict the 
drape of fabric from measured fabric mechanical and 
physical properties because there does not exist an empirical 
relation that relates drape to these properties. (A more 
detailed discussion of fabric mechanical and physical 
properties can be found in Kawabata. [SI) Neural networks 
are able to handle many variables as inputs and form a 
relationship between the inputs and the output from 
experience. Since these systems are capable of constructing 
correlation between known cause and effect situations, they 
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can he very useful for predicting the fabric drape coefficient. 
Continuing the work of Gocke [6], the performance of 
backpropagation (BP) and radial basis function neural 
networks (RBF) are investigated. 

11. FABRIC DRAPE 

A. Drape Coeflcient and Circulari@ 
The drape coefficient (DC) and circularity (CIR) in 

this study are values that are obtained from measurements of 
the fabric drape image acquired using a Cusick Drape meter 
[3] as illustrated in Fig. 1. 

Fig. 1. Specimen draped over a pedestal with a light source beneath 
it. 

DC and CIK are defined by the following equations: 

where Ad is the area inside the drape curve, A, is the area of 
the inner circle, and A, is the area of the undraped fabric as 
can be seen in Fig. 1. 

where P i s  the perimeter of the drape curve. 
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Digital image analysis algorithms were written to 
calculate these two values from all the images acquired for 
the fabrics used for constructing the training and testing sets. 

electronic scale for the weight of the fabrics. The DCs of the 
fabrics were calculated by using a Cusick drape meter as 
shown in Figure 2. 

B. Parameters for Prediction .. . 

It was found in the literature on fabric drape that 
various factors influence drape. Chan and Hu [Z] found that 
bending rigidity, hysteresis of bending moment, shear 
rigidity, hysteresis of shear force at 0.5 degrees, hysteresis of 
shear force at 5 degrees, fabric weight, mean deviation of 
friction from the surface roughness test, and linearity of 
load-extension curve are highly correlated with the drape 
coefficient. Frydrych, Dziworska, and Cieslinska [4] also 
reported that bending rigidity, initial tensile modulus, weave, 
weight, and tensile recovely affect the drape of fabric. 

Amirbayat and Hearle [I]  made a theoretical 
investigation on the draping behavior of sheet materials and 
they found that the geometric form of deformation can be 
related to two dimensionless energy groups, relating 
bending, membrane, and potential energies, and definable in 
terms of sheet parameters and size. The two dimensionless 
energy groups J, and J2 relate membrane strain energy U, 
and potential energy U, to bending strain energy Us by J, = 
U, I UB82 and J2 = U, 0 / UB, where 0 is a geometrical 
measure of the form of deformation. In terms of material 
properties, J ,  = Y I2 / B and J2 = y g 1 3 / 8, where B is the 
bending stifmess, y g is fabric weight, Y is the fabric 
membrane modulus, and 1 is the characteristic length 
defming the size of the material. Their experiment showed 
that drape coefficient is not only a function of J ,  and J2, hut 
must also he influenced by other parameters such as the full 
set of anisotropic in-plane membrane and out-of-plane 
bending and cross-term elastic constants, and perhaps the 
nonlinearity of response. 

between drape coefficient and mechanical properties of 
fabrics and showed that bending rigidity (B: g cm2 I cm) and 
weight per unit area of fabric (W : p/cm2) are most 
determinative parameters to the drape of fabric. 

wet? knitted fabrics and reported that bending length, 
weight, thickness, and shear modulus are hest predictors of 
drape coefficient of knitted fabrics. 

To predict DC and CIR, seven parameters were 
chosen to he the neural network inputs. The seven 
parameters are weight, thickness, bending rigidity, shear 
rigidity, hysteresis of shear force at 0.5 degrees, linearity of 
load-extension curve, and weave. These seven parameters 
were chosen out of thirteen measured properties because the 
literature has shown these parameters to influence the drape 
of a fabric the most. 

Niwa and Morooka [lo] also investigated relation 

In addition, Gaucher et al. [ 5 ]  studied warp and 

111. DATA COLLECTION AND PROCESSING 

The Kawabata test instruments were used for 
testing thirteen mechanical properties of the fabrics, a 
thickness gauge was use to test the thickness, and an 

Fig. 2. Cusick Drape Meter 

At the same time, digital images of the draped 
fabrics were also captured. For digital image capturing 
purposes, a digital camera was mounted 60 cm. above from 
the top panel of the Cusick drape meter. Images of draped 
fabric captured using the Cusick drape meter were saved in 
PGM file format to avoid any loss of data due to 
compression. Programs for digital image analysis were 
written to analyze the images and determine the DC and CIR 
of the draped fabrics. Long and Rohson [9] reported that 
there is very high correlation between the drape coefficient 
values measured by image analysis and drapemeter 
measurement. It was decided that the digital image analysis 
method provides more accurate results because it eliminates 
human error from manual measurements. 

IV. METHODOLOGY 
A. Backpropagation 

Backpropagation is typically done on feed forward 
neural networks and are able to generalize well on a wide 
variety of problems. These training methods are called 
supervised training because they are trained with both inputs 
and outputs. Input signals propagate through the network 
layer by layer, in the end producing a response at the output 
of the network. This phase of the operation of back- 
propagation is called the forward phase. The output of the 
network is compared with the target response, generating 
error signals. These error signals propagate in a backward 
direction through the network. In this phase, the weights of 
the network are adjusted to minimize the sum of squared 
errors: 

Where ti is the ith desired output (target) and yi is the ith 
output. 
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The equation for each delta weight, at the lth iteration is: 

Where a is the learning rate, yj is the jth output from the 
previous layer, m is the momentum constant (momentum 
can help the network from getting "stuck" in local minima 
when training), Awdl-1) is just the previous weight change 
made, and Si is defined as: 
In the case of our linear output layer: 

In the case of the hidden layer: 

A ~ ~ ( l ) = a S ~ y ~  +mAw,(l-l)  (4) 

S i = t i - y i  ( 5 )  

6, = A'(neti)CSkwki (6) 
keI: 

The Sk and wkj in (6) are from the layer above the layer for 
Si. (Pi is the set of posterior neurons.)f is the activation 
function of the particular neuron in the layer. 

In this project, for the BP algorithm involved we 
randomly exposed the training data to the neural network 
one at a time and had the weights updated aAer processing 
each target. The architecture of the neural network consisted 
of 7 hidden neurons, 2 output neurons and bias factors. The 
bias factors can be thought of as including an extra bias 
weight for each neuron and inputting a constant value of 1.0 
into the bias weights. 
The input and output layers consisted of neurons with linear 
activation functions: 

d v )  = v (7) 
The hidden layer consisted of sigmoid activation functions: 

Where a in (8) is the slope parameter of the sigmoid 
activation function. 

It should also be noted that the inputs were scaled 
so that the neural network could process them effectively. 
Certain input parameters were scaled so that as many input 
values as possible would be fractional values in between 0.1 
and 1.0. For example, if one of the input values were 5.332 
then that would become 0.5332. Also if for example, 
parameter three had mostly input values from our data in 
between 0.01 and 0.1, then all parameter three's values 
would be multiplied by ten. So a value such as 0.0833 would 
become 0.833. If parameter three also had a few values 
greater than 0.1 such as 0.1073, then they too would have 
been multiplied by ten so 0.1073 would become 1.07. 
Basically as many input values as possible were scaled so all 
parameters would have input values that would generally be 
in the same range. 

random (to prevent bias toward any data due to its order in 
the data set). The reason for choosing this particular method 
was because it was simple to implement and the results for 
DC and CIR were on average within 6% and 1 1 %  error 
respectively. Also, in a more practical case where the data 
set would be expected to be large, incremental training 

At each iteration an input data point is chosen at 

would be a good candidate. Batch training, running through 
all the training data before making a change to the weights 
would be impractical with very large training sets. 

B. Radial Basis Function Neural Networks 
The Gaussian function was used for the RBF neural 
networks: 

m j  (x) = exp [ - "xi; ' I 2 )  (9) 

Where p, is thejth center and o, is thejth radius. 
The idea is to choose the centers and radii for the 

bidden layer that reflect the distribution of the data. Then the 
weights in the linear layer can be computed. There are many 
ways of choosing the appropriate centers. The simplest ways 
are to create a center for every data point in the training set 
or to choose a fixed number of random training set data 
points as centers. Another potentially better way to choose 
the centers is to use the K-means algorithm. In the K-means 
algorithm, k clusters are selected first, then a re-estimation 
procedure is used to partition the data into k disjoint sets. 
The incremental version of this algorithm was chosen and 
what happens is that k data points are randomly chosen to be 
initial centers and then the k centers are updated according 
to the remaining points they are closest to by the equation: 

APj =P(x-Pj) (10) 

Where p is a small constant, x is the closest data point from 
the training set, and pj  is thejth center. 
The weights of the linear layer can be found using the 
pseudoinverse. In this method, the weights are found 
according to the equation: 

Where W is set of weights, T is the set of targets, and the 
standard pseudoinverse is: 

W' = Q'T (11) 

m+ E5 (@'@)-'ID' (12) 
The radii were set to the constant 4.0 because this gave fairly 
good results. This is probably because the maximum 
distance between any two points in our data was found to be 
roughly 4.36. 

Reasons for using RBF networks is because their 
design allows for efficient clustering algorithms to adapt the 
bidden units during training without involving the target 
values. [7] Combine that with a method for calculating the 
linear layer's weights and training RBFs becomes fast. This 
is why the training time is much shorter with RBFs than with 
the BP's training time. 

v. RESULTS AND COMPARISONS 
For each test, nine of the 45 data are randomly 

chosen to be in the test set. All seven fabric properties, fabric 
weight (W), fabric thickness (T), bending rigidity (B), shear 
rigidity (G), hysteresis of shear force at 0.5 degrees (ZHG), 
linearity of load-extension curve (LT), and weave were used 
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as inputs to all neural networks except in one case where G 
was excluded, the reason for which is described later in this 
section. In the BP method, the best results were obtained 
with a learning rate of 0.05, momentum of 0, and a slope of 
0.1 for the sigmoid functions. 

For the RBF method, both using all training data 
points as centers as well as the incremental version of the K- 
means algorithm (with 550 iterations, i.e. using (IO) on the 
data 550 times, and 0.1 for the p constant) to find the centers 
were investigated. A summary of the results for the test sets 
can he seen in Table I. (Unless otherwise specified, each BP 
test had a learning rate of 0.05 and was trained on 10000 
iterations per test.) 

TABLE I 
Mean of average percent errors, and average coefficients of 
correlation over several tests. Each configuration was run on 
IO tests. M is momentum and LR is learning rate. 

hietlral pi~%,llClCS Prrcatt Em>,s coeffic,r,us 
of currelariorr 

Dc 1 *la 

BP hl := 0 6.18% 10.51% 0.86 0.84 0.5 1 
UP bi=oni  5.7% 9.93% 0.87 0.74 

BP L R = O . I . b l = O  855% 1408% 067 0 5 6  0.5 0.55 0.1 0.0s 0.7 0,;s 0.1 0.85 0.0 
BP bl = 0.025 5.03% 10.32% 0.82 0.73 0 1  1 -, 

. . . . . . . . . . . . . . . . . . . . . 
BP(0Riclided) LR=OOS.M=O 5.63% 8.34% 085 0.80 
RBF hlltraiNr@Lr.la 8.69% 11.52% 0.71 0.58 

u w  K-meansjk=S) 7.85% 12.56% 0.67 0.69 
RBF E-iumwfk-101 11.98% 18.23% 0.54 0.40 

2s centem, 

The CIR results were usually worse than the DC 
results in all cases. While the results of CIR were not as 
good as the DC results, CIR still had reasonable results in 
both of the BP test runs with learn rate = 0.05 and 
momentum = 0. This suggests that CIR is a particularly 
sensitive parameter and requires very careful and slow 
convergence. 

The BP methods that overall, did the best were the 
ones with learn rate = 0.05 and momentum values of 0. 
However when momentum was set to 0.01 (all other 
parameters being the same), DC results improved slightly. 
Momentum, as stated earlier can help the network from 
getting “stuck” in local minima when training. So this may 
have helped DC but CIR results were not quite as good. The 
CIR average percent errors improved slightly but its 
correlation coefficient went from 0.84 (without momentum) 
to 0.74. Also, the BP method with 0.025 momentum while 
comparable to the one with no momentum (at least with DC) 
still had overall worse results. The momentum value may 
have been too high and so learning was less stable. (High 
values for parameters such as learning rates can make a 
neural network learn faster but can also cause it to be 
unstable.) Good parameters simply have to be found 
experimentally because good parameters depend on the 
specific application and data set. Some of our tests yielded 
very good results. Fig. 3 shows sample best linear fit graphs 
using our best case results. 

Artvat  CIR 

r = 0.92 
Fig. 3. Best Linear Fits for the best case’s (a) DC and (b) CIR. 

Sometimes excluding an entire variable helps. The 
decision was made to exclude G and train using the BP 
method with a learning rate of 0.05 and momentum of 0. G 
was excluded because it contributed least to the neural 
network’s outputs as can he seen in Fig. 4. (Determined by 
an analysis of the weights.) 

03 0 3  

0.2 0 2  

01 0.1 

0 0  00 
W T B G2HGLTWeave W T B G2HGLTWcavc 

nr. r.7” 
UL LlK 

Fig. 4. Contributions of each input variable to the DC and CIR for 
BP training model. 

In comparison to the BP test with the same 
parameters, excluding G only improved the percent errors 
slightly. Overall, excluding G gave comparable results but 
the correlation values were better with G. This suggests that 
G is still an important factor for ow data. 

The RBF networks did not perform as well as the 
ones using BP. Both the average errors and coefficients of 
correlation were worse than those of the BP tests. This is not 
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surprising because RBF networks typically require 10 times 
more data to achieve the same accuracy as BP training. 
Using the targets to train the RBF hidden units would 
improve the accuracy of the network but that would 
compromise the speed advantage. [7] Therefore methods 
such as the K-means algorithm were tested and only resulted 
in moderate correlation using k=5. It should also be noted 
that the RBF results were less consistent than the BP results. 
In the set of tests with k=5, average DC percent errors would 
range fiom 5.2% to 14.2%. For the BP tests with learning 
rate of 0.05 and momentum of 0, the average DC percent 
errors ranged from 4.4% to 7.5%. Although considering the 
size of our data set, the RBF performed better than expected. 

V. CONCLUSION 
Neural networks provide a means to predict the 

drape coefficient and circularity using the fabric physical 
and mechanical properties. The two neural network models 
performed reasonably well but the performance can be 
further improved. The results of the neural network 
generalizations were fairly good considering that there were 
only 45 data points to work with. The BP method’s results 
were far more promising. The RBF results were not as 
promising however a further investigation of these methods 
with more data may give better results for both models. 
Regardless of what models are found to be most effective, 
the key to the success of using neural networks for drape 
prediction is probably the accumulation of a large database 
of many different fabric physical and mechanical properties 
for fabrics and their resulting drapes. 
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