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Abstract

In recent years, fluorescence analysis of scenes has re-
ceived attention. Fluorescence can provide additional in-
formation about scenes, and has been used in applications
such as camera spectral sensitivity estimation, 3D recon-
struction, and color relighting. In particular, hyperspec-
tral images of reflective-fluorescent scenes provide a rich
amount of data. However, due to the complex nature of
fluorescence, hyperspectral imaging methods rely on spe-
cialized equipment such as hyperspectral cameras and spe-
cialized illuminants. In this paper, we propose a more
practical approach to hyperspectral imaging of reflective-
fluorescent scenes using only a conventional RGB camera
and varied colored illuminants. The key idea of our ap-
proach is to exploit a unique property of fluorescence: the
chromaticity of fluorescence emissions are invariant under
different illuminants. This allows us to robustly estimate
spectral reflectance and fluorescence emission chromatic-
ity. We then show that given the spectral reflectance and
fluorescent chromaticity, the fluorescence absorption and
emission spectra can also be estimated. We demonstrate
in results that all scene spectra can be accurately estimated
from RGB images. Finally, we show that our method can be
used to accurately relight scenes under novel lighting.

1. Introduction

Fluorescence analysis has received attention in recent

years. This is because fluorescence can provide additional

information about scenes and has been applied to problems

in camera spectral sensitivity estimation [5], 3D reconstruc-

tion [16, 18], immersion range scanning [6], and color re-

lighting [10, 4] to name a few. In particular, hyperspec-

Figure 1. Overview of the method. The input images are captured

under varied illuminants. The reflectance spectrum and the chro-

maticity of the fluorescent component are optimized in a process

of alternating iterations that exploits the illuminant-invariant chro-

maticity of fluorescence. After that, the fluorescence absorption

and emission spectra are estimated.

tral images of reflective-fluorescent scenes provides a rich

amount of data.

However, capturing such hyperspectral reflective-

fluorescent images is challenging due to the very different

ways that reflectance and fluorescence responds to incident

light [9, 20]. When a reflective surface is illuminated at

a particular wavelength, it reflects back light of the same

wavelength. For a fluorescent surface, light is absorbed

at certain wavelengths and then light is emitted back at

other wavelengths. Therefore a fluorescence imaging sys-

tem needs to be able to capture the relationship between

absorption and emission wavelengths.

The conventional approach to capturing this relationship

is to exhaustively measure different combinations of ab-

sorbing and emitting wavelengths [11]. This is labor in-

tensive and only works for a single surface point. Thus it is

impractical for imaging entire scenes.

Instead, a camera based solution where entire scenes can

be captured would be desirable. Zhang and Sato [20] pro-

posed a method that uses a RGB camera and ICA to separate
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reflective and fluorescent components but their method does

not capture spectral distributions. In recent work, methods

for hyperspectral imaging of reflective-fluorescent scenes

have been proposed [10, 4]. These methods are effective

but require specialized cameras and specialized illuminants

such as narrowband light or high frequency light spectra.

We propose a more practical approach to hyperspectral

imaging of reflective-fluorescent scenes using only a con-

ventional RGB camera and varied colored illuminants. Our

method takes as input RGB images under different lighting

and effectively separates reflectance and fluorescence in the

spectral domain. These separated results can then be used

for tasks such as accurate color relighting of scenes under

novel lighting (Figure 1).

The key idea in our approach is to exploit a unique prop-

erty of fluorescence: the chromaticity of fluorescence emis-

sions are invariant under different illuminants. Based on

this property, we formulate a method that takes RGB images

and performs pixel-wise estimation of spectral reflectance

and fluorescent chromaticity. The method works by itera-

tively improving estimates of the spectral reflectance and

fluorescent chromaticity in turn. We show our method is

robust to initialization conditions and converges onto ac-

curate spectral reflectance and fluorescent chromaticity for

real scenes. Then we propose methods for estimating the

fluorescence absorption and emission spectra of the scene

given the estimated spectral reflectance data and fluorescent

chromaticities.

In summary, our main contributions are that we

1. Exploit the illuminant-invariant chromaticity of fluo-

rescence to estimate both spectral reflectance and fluo-

rescent chromaticity from RGB images,

2. Devise a means for estimating fluorescence absorption

and emission spectra from given spectral reflectance

and fluorescent chromaticity,

3. Ultimately, presenting the first system capable of

imaging all reflective and fluorescence absorption and

emission spectra of real scenes using only a conven-

tional RGB camera and varied colored illuminants.

We show our method is accurate and demonstrate its effec-

tiveness in predicting color relighting of real scenes.

2. Related Work
A number of methods for capturing only the spectral re-

flectance of scenes using conventional RGB cameras have

been proposed [3, 12, 8]. These methods are practical and

effective for imaging spectral reflectance but their limitation

is they cannot accurately capture scenes with fluorescent

surfaces. The reason for this loss in accuracy is because re-

flective and fluorescent surfaces react to incident light very

differently.

The detrimental effects of not considering fluorescence

is nicely illustrated in Johnson and Fairchild [9] where

they showed that taking fluorescence into account dramati-

cally improved color renderings. Furthermore, Barnard pro-

posed improvements to color constancy algorithms which

included spectral data from several fluorescent materials

[2]. Later, Wilkie et al. [19] showed accurate results by

rendering fluorescence emissions using diffuse surfaces that

can reflect light at a wavelength different from its incident

illuminant wavelength. Hullin et al. [7] also demonstrated

the importance of modeling different reflective-fluorescent

materials by introducing the bidirectional reflectance and

reradiation distribution function (BRRDF).

A conventional way to measure fluorescence in the spec-

tral domain is to use Bispectral measurements [11]. How-

ever, exhaustively measuring different combinations of ab-

sorption and emission wavelengths is labor intensive. In

addition, such measurements only work for a single surface

point. Thus they are impractical for imaging scenes.

Instead, a camera based approach is more desirable.

Zhang and Sato [20] proposed an ICA based reflective-

fluorescent separation method. Tominaga et al. [17] used

two light sources and multispectral imaging to estimate flu-

orescence emission spectra. Alterman et al. separated

the appearance of each fluorescent dye from a mixture by

unmixing multiplexed images [1]. None of these methods

fully recover all reflective and fluorescent components of

scenes. In recent work, methods for hyperspectral imaging

of reflective-fluorescent scenes have been proposed. Lam

and Sato [10] provided a method for recovering the full

spectral reflectance and fluorescence absorption and emis-

sion spectra of scenes but they require a multiband camera

and multiple narrowband illuminants. Fu et al. [4] also re-

covered the full spectral reflectance and fluorescence spec-

tra of scenes by using high frequency light spectra but they

require a hyperspectral camera and a programmable light

source: a device that can be programmed to produce ar-

bitrary light spectra. While effective, these methods require

specialized equipment so their use in applications is limited.

We propose a more practical approach to fully capturing the

reflectance and fluorescence absorption and emission spec-

tra of scenes using a RGB camera and varied illuminants.

3. Reflectance and Fluorescence Spectra Esti-
mation

3.1. Problem Formulation

We start by describing the basic formulation of our prob-

lem. When taking an image of a scene with reflective-

fluorescent components using a RGB camera, the intensity

of each pixel for the n-th channel under the m-th illuminant

is

pmn = rmn + fm
n . (1)
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rmn is the reflective component for the n-th channel under

the m-th illuminant and can be described by

rmn =

∫
cn(λ)lm(λ)s(λ)dλ, (2)

where s(λ) is the spectral reflectance of the material at

wavelength λ, lm(λ) is the m-th illuminant’s intensity and

cn(λ) (n = 1, 2, 3) is the corresponding camera spectral

sensitivity for the R, G, and B channels.

fm
n is the fluorescent component [20] for the n-th chan-

nel under the m-th illuminant and

fm
n =

(∫
lm(λ

′
)a(λ

′
)dλ

′
)∫

cn(λ)e(λ)dλ = kmDn

(3)

where λ
′

and λ are the wavelengths of the incident light and

the outgoing fluorescence emission respectively, a(λ
′
) and

e(λ) represent the absorption and emission spectra at their

respective wavelengths, and km =
∫
lm(λ

′
)a(λ

′
)dλ

′
and

Dn =
∫
cn(λ)e(λ)dλ.

Substituting Equations (2) and (3) into Equation (1),

pmn =

∫
cn(λ)lm(λ)s(λ)dλ

+

(∫
lm(λ

′
)a(λ

′
)dλ

′
)∫

cn(λ)e(λ)dλ.

(4)

Equation (4) describes how the components of a

reflective-fluorescent surface jointly appear in a camera im-

age under illuminant lm. Our task is to determine the full

spectral reflectance s and fluorescence absorption spectrum

a and emission spectrum e given the observed pmn under

different illuminants lm and camera spectral sensitivity cn,

which can be estimated by

{ŝ, â, ê} = argmin
s,a,e

G(s,a, e), (5)

where

G(s,a, e) =
∑
m

∑
n

‖pmn − p̂mn (s,a, e)‖22 (6)

and p̂mn (s,a, e) is the estimated parameterization of pmn .

Our method for optimizing Equation (5) makes use of

the illuminant-invariant chromaticity of fluorescence. We

now show how chromaticity value Em
n of the fluorescent

component under the m-th illuminant for the n-th channel

can be computed. We define chromaticity as the normalized

RGB fluorescence emission,

Em
n =

kmDn∑3
t=1 kmDt

=
Dn∑3
t=1 Dt

= En, (7)

where En is called the reference chromaticity.

Equation (7) implies chromaticity value Em
n is indepen-

dent of its illuminant and is thus constant. We also note that

since
∑3

n En = 1, E3 = 1 − E1 − E2, the chromaticity

can be uniquely expressed with only 2 values. However, for

convenience in our derivations, we will express chromatic-

ity in terms of 3 values.

In summary, we will determine all spectral components

in two stages. We start by using the illuminant-invariant

chromaticity of fluorescence to estimate the reflectance

spectrum s and the fluorescent chromaticity values En for

all channels n. After that, the fluorescence absorption spec-

trum a and emission spectrum e can be recovered. Figure 1

shows an overview of the proposed method.

3.2. Reflectance Spectrum Recovery

In the previous sections, we described that the chro-

maticity of fluorescence is invariant under different illumi-

nants. We now show how to use the illuminant-invariant

chromaticity of fluorescence in conjunction with basis func-

tions for spectral reflectance to estimate the spectral re-

flectance of the scene.

According to a previous study [15], the spectral re-

flectance of various materials can be approximately repre-

sented by using a small number of basis functions as

s(λ) =
J∑

j=1

αjbj(λ), (8)

where bj(λ)(j = 1, 2, · · · , J) are the basis functions for

spectral reflectance and αj are the corresponding coeffi-

cients. From Equation (8), Equation (2) can be rewritten

as

rmn =
∑
j

αj

∫
cn(λ)lm(λ)bj(λ)dλ =

∑
j

αjq
m
n,j , (9)

where qmn,j =
∫
cn(λ)lm(λ)bj(λ)dλ.

We now show that the illuminant-invariant chromaticity

of the fluorescence makes it possible to estimate the spectral

reflectance s without knowing absorption spectrum a and

emission spectrum e. First note that fm
n = pmn −rmn = pmn −∑

j αjq
m
n,j . According Equation (7), the chromaticity value

Em
n for channel n under illumination m can be computed

by

Em
n =

fm
n∑
t f

m
t

=
pmn −

∑
j αjq

m
n,j∑

t(p
m
t −

∑
j αjqmt,j)

= En. (10)

By straightforward algebraic manipulation of Equation

(10), we can see that

pmn = En

∑
t

(pmt −
∑
j

αjq
m
t,j)+

∑
j

αjq
m
n,j = pmn (α,E).

(11)

where α is the set of coefficients αj(j = 1, 2, ...J) and

E is the set of chromaticity values En(n = 1, 2, 3), and
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pmn (α,E) is the parameterization of pmn . Then instead of

minimizing Equation (6), we can minimize

G(α,E) =
∑
m

∑
n

‖pmn − p̂mn (α, En)‖22, (12)

where p̂mn (α, En) is called the estimated parameterization

of pmn . Equation (12) shows that coefficients α and chro-

maticity E can be estimated in place of s, a, and e.

The parameters α and E need to be chosen to minimize

the error function in Equation (12). Determining α would

allow for recovering the spectral reflectance s according to

Equation (8). Finding E would provide us with the flu-

orescent chromaticity which will be used in later steps to

determine the fluorescence spectral components.

We propose a simple and effective method for estimating

parameters α and E using alternating iterations to converge

upon a solution. We first initialize E to an approximation of

the true emission chromaticity by setting it to be the average

of the RGB values of the surface point imaged under the M
illuminants. A more detailed discussion on the initialization

of E can be found in Section 3.5. We then solve for α as

α̂̂α̂α = argmin
α

∑
m

∑
n

‖pmn − p̂mn (α,E)‖22. (13)

One way to solve Equation (13) is to find α such

that pmn = p̂mn (α,E) = En

∑
t(p

m
t − ∑J

j=1 αjq
m
t,j) +∑J

j=1 αjq
m
n,j . Then rearranging terms in the equation, we

can get

ymn =
∑
j

αjw
m
n,j , (14)

where ymn = pmn −En

∑
t p

m
t and wm

n,j = qmn,j−En

∑
t q

m
t,j .

Equation (14) can be solved for all m and n in matrix form

by finding the vector α = [α1, ..., αJ ]
T such that

y = Wα, (15)

where y = [y11 , y
1
2 , y

1
3 , ..., y

M
1 , yM2 , yM3 ]T , is a 3M × 1 vec-

tor and W is a 3M×J matrix where W3(m−1)+n,j = wm
n,j .

In our system, we actually have 2M independent equa-

tions because chromaticity is uniquely expressed in only 2

values. We choose M , such that 2M > J , so the prob-

lem of estimating coefficients α is over-determined. We

adopted the constrained minimization method employed in

Park et al. [14] with a non-negative constraint on the recon-

structed reflectance spectrum and use the second derivative

of the reflectance spectrum with respect to λ as a smooth-

ness constraint,

α̂ =argmin

{
‖y −Wα‖22 + μr

∫ (
∂2s(λ)

∂λ2

)2

dλ

}
,

s.t. Bα ≥ 0 for all λ,
(16)

where μr is a weight for the constraint term. B’s columns

are the reflectance spectral basis vectors bm.

Given the estimated α, E can be estimated by minimiz-

ing the same error function in Equation (12) with the con-

straint that
∑3

n En = 1. After several alternating iterations

between estimating α and E, we converge upon a solution

where α and E are well estimated. With α estimated, spec-

tral reflectance s can be reconstructed by Equation (8).

3.3. Fluorescence Absorption Spectrum Recovery

Using the obtained spectral reflectance s and Equation

(2), the appearance of the fluorescent component under the

m-th illuminant is computed as fm
n = pmn −rmn and we will

describe how the fluorescence spectral components can be

estimated given fm
n .

Previous work has also shown that absorption spectra can

be well represented by basis functions [10]. In our inves-

tigation, we have found that a large collection of absorp-

tion spectra from the McNamara and Boswell Fluorescence

Spectral Dataset [13] can be well represented using 9 prin-

cipal components. Thus our observed absorption spectrum

can be expressed as a linear combination of basis vectors

a(λ) =
9∑

i=1

βivi(λ), (17)

where vi(λ) (i = 1, · · · , 9) is the i-th basis vector at wave-

length λ and βi is the corresponding coefficient. From

Equations (3) and (17) the fluorescent component fm
n can

be described as

fm
n = Dn

∑
i

βm

∫
lm(λ)vi(λ)dλ = Dn

∑
i

βmhm
i

= γEn

∑
i

βmhm
i

(18)

where hm
i =

∫
lm(λ)vi(λ)dλ and γ =

∑3
t=1 Dt.

En was determined from Section 3.2 so it can be used to

recover the fluorescence absorption spectrum by estimating

the coefficients βi as

β̂̂β̂β = argmin
βββ

∑
m

∑
n

‖fm
n − γEn

∑
i

βih
m
i ‖22. (19)

Similarly to Equation (16), this is solved with a regulariza-

tion term as

β̂̂β̂β =argmin

{
‖f −Hβ‖22 + μa

∫ (
∂2a(λ)

∂λ2

)2

dλ

}
,

s.t. V β ≥ 0 for all λ,
(20)

where f = [f1
1 , · · · , fM

3 ]T , is a 3M × 1 vector, β =
γ[β1, · · · , β9]

T is a 9 × 1 coefficient vector, and H is a

216021662174
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Figure 2. All test errors sorted in ascending order. 69% of cases

were below the average error of 0.01.
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Figure 3. Examples of estimated emission spectra and their root-

mean-square-errors.

matrix where Hm
3(m−1)+n,i = hm

i En. V is a matrix whose

columns are the absorption spectral basis vectors and γ is

just a scale factor that does not affect the estimated shape

of the fluorescence absorption spectrum. With the calcu-

lated results by Equation (20), the fluorescence absorption

spectrum can be recovered by Equation (17).

3.4. Fluorescence Emission Spectrum Recovery

In our system, we use a RGB camera to capture the scene

and only have 2 values for the fluorescent chromaticity E to

recover the emission spectrum. Estimating an entire emis-

sion spectrum from only 2 values is a challenging prob-

lem but we have devised a data driven method that is ef-

fective. We observe the emission spectra in the McNamara

and Boswell Fluorescence Spectral Dataset, and find they

all have similar bell shapes (see Figure 3 for examples) but

with different widths and peaks at different wavelengths.

Due to the restricted types of shapes exhibited by emission

spectra, we have found that similar emission chromaticities

generally map to similar emission spectra.

This makes it possible to determine the corresponding

emission spectrum to a given emission chromaticity by

performing a simple procedure. We use the known cam-

era spectral sensitivity and integrate it with each fluores-

cence emission spectrum in the dataset to obtain the cor-

responding chromaticity for each fluorescence emission.

Then, we compare the estimated fluorescent chromaticity

E with the fluorescent chromaticities from the dataset. The

dataset emission spectrum’s chromaticity with the lowest

sum square error to the estimated fluorescent chromaticity

E is then chosen as E’s emission spectrum.

To test the effectiveness of our method, we conducted

tests on the McNamara and Boswell Fluorescence Spectral

Dataset. We first chose a subset of materials such that the

emission and absorption spectra were both present in the

visible spectrum (400 - 700 nm).1 This resulted in a col-

1We chose this subset because our experimental setup is currently fo-

Sheets Average Standard Ground Average

Chromaticity Deviation Truth Image

Pink (0.61, 0.19) (0.01, 0.00) (0.61 0.20) (0.62, 0.14)

Green (0.15, 0.64) (0.01, 0.02) (0.16 0.64) (0.15, 0.69)

Orange (0.56, 0.32) (0.02, 0.02) (0.56 0.31) (0.56, 0.30)

Red (0.61, 0.21) (0.00, 0.00) (0.61 0.20) (0.65, 0.16)

Yellow (0.19, 0.62) (0.01, 0.03) (0.19 0.62) (0.19, 0.68)

Table 1. Average and standard deviations of the converged upon

estimated chromaticities under all 66 initializations of E. The 66

initializations are densely and uniformly distributed in the space of

possible initializations of E. The low standard deviations indicate

our estimation method is robust to different initializations of E.

The last column shows the results from using the average RGB

values of the input images to our procedure to initialize E.

lection of 183 materials. We then tested our method using

leave-one-out cross-validation on the 183 emission spec-

tra. In each case, the error between the estimated emission

spectrum and its ground truth was computed using the root-

mean-square-error (RMSE). Before computing the errors,

the estimation and ground truth were also normalized for

scale by setting them to be unit length vectors.

In our results, we found an average error of 0.01. See

Figure 2 for a plot of all the errors for the 183 estimated

emission spectra. Our results indicate that the majority of

materials fit our assumption and emission spectra are accu-

rately estimated as can be seen in Figure 3. We did find

cases with higher errors that violated our assumption but

these cases only constituted a small set.

3.5. Fluorescent Chromaticity Initialization

In Equation (13), to estimate the reflectance spectrum,

we need to initialize the chromaticity E of the fluorescent

component first. In our method, we initialized E by the

average of the RGB values of the pixel imaged under the

M illuminants. This choice was based on the reasoning that

since only the fluorescent component would have constant

chromaticity over all illuminants, the average RGB value

should be skewed towards the true fluorescent chromaticity.

We test the effectiveness of this idea against other pos-

sible initialization values for E by exhaustively trying dif-

ferent values for chromaticity and running our alternating

iterations described in Section 3.2 to see what kinds of chro-

maticity values would be converged upon. For the types of

initializations tested, we choose a dense and uniformly dis-

tributed set of initializations for E from the space of possi-

ble chromaticities. This amounted to 66 initializations.

Table 1 shows average estimated chromaticities and their

standard deviations for all 66 initializations for the 5 fluo-

rescent sheets on the color wheel in Figure 1. We found

the averages in Table 1 to be close to the ground truth chro-

maticities. Initializing with the average RGB values from

cused on imaging in the visible spectrum. Although conceptually, our

methods would extend to non-visible wavelengths as well.

216121672175
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Figure 4. The spectra of our 9 colored lights.
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Figure 5. Recovered reflectance r(λ), fluorescence absorption

a(λ) and emission e(λ) spectra of the green and orange sheets.

The left column is for the green sheet and the right column is for

the orange sheet.
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Figure 6. Comparison of [4] and our method using synthetic data.

the M illuminants also yielded results close to the ground

truth. In addition, the standard deviations of the 66 initial-

izations is very small for all the fluorescent sheets tested.

This indicates that our estimation method is very robust to

the choice of initialization values of E. Using the average

of the RGB values under different illuminants to initialize

E is a good choice but almost all other initializations of E
would also be just as good.

4. Experimental results

The performance of our method was tested by using im-

ages taken by a CCD camera (SONY DXC-9000) under

varied illuminants. The types of illuminants used were 9

colored lights ranging from blue to red in the visible spec-

trum (Figure 4), which were produced by a Nikon Equalized

Light Source (ELS).

Scene R Only R+F

Min Max Min Max

Color Wheel 0.4090 0.5063 0.0283 0.0500

Cup 0.2254 0.3013 0.0224 0.0374

Train 0.3379 0.6351 0.0346 0.0693

Table 2. The errors between the ground truth and the relighted

results. “R Only” means only reflectance was considered.

The “R+F” means reflectance and fluorescence were considered.

“Max” and “Min” correspond to the maximum and minimum er-

rors under 5 different illuminants, respectively.

4.1. Recovery of Spectra

We first evaluate the accuracy of the recovered spectral

reflectance and fluorescence absorption and emission spec-

tra of the green and orange fluorescent sheets on the color

wheel of Figure 1. Figure 5 shows the recovered spectral

reflectance and fluorescence absorption and emission spec-

tra of the green (the left column) and orange (the right col-

umn) fluorescent sheets. The recovered spectral reflectance

(Figure 5 (a) and (b)), absorption spectra (Figure 5 (c) and

(d)) and emission spectra (Figure 5 (e) and (f)) of both flu-

orescent sheets approximate the ground truth well. We also

compared our method against previous work [4]. To allow

for the fairest comparison under ideal conditions for both

methods, we performed synthetic tests. Compared against

[4], which requires a hyperspectral camera and specialized

illuminants, we achieve competitive results (Figure 6). Sim-

ilar results were observed for other spectra as well.

4.2. Relighting Results

Since our method is able to recover the full spectral re-

flectance, fluorescence absorption, and fluorescence emis-

sion spectra for an entire scene, the scenes can be re-

lighted. In this section, we quantitatively evaluate the er-

rors in relighting of real scenes. Figures 7, 8, and 9

show relighting results using the spectral reflectance, flu-

orescence absorption and emission spectra estimated by

our method. We evaluated the accuracy of relighting with

our method by computing errors between the ground truth

and the relighted results for 3 scenes under 5 illuminants

as

√∑
n(p

gt
n − pren )2/

∑
n(p

gt
n )2, where pgtn is the ground

truth (corresponding images in Figures 7-9 (b)) and pren is

the relighting result (Figures 7-9 (d) and (f)). Table 2 shows

the maximum and minimum errors for 3 scenes under 5 il-

luminants. We can see that the errors are large when only

reflectance is considered. When fluorescence is considered,

the errors are small and show that the predicted colors are

very close to their ground truth images.

Figure 7 also shows the separation of reflectance and flu-

orescence for a fluorescent scene in addition to relighting

results. In Figure 7 (c) and (e) we see the recovered reflec-

tive and fluorescent components. In the scene, the notebook

on the left only has ordinary reflectance so its colors in the
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(a) White light (b) Ground truth

(c) Reflectance (d) Relighted without fluorescence

(e) Fluorescence (f) Relighted with fluorescence

Figure 7. Relighting results for the fluorescent color wheel.

(a) White light (b) Ground truth

(c) Reflectance (d) Relighted without fluorescence

(e) Fluorescence (f) Relighted with fluorescence

Figure 8. Relighting results for the fluorescent cup scene.

recovered reflective component (Figure 7 (c)) are the same

as those seen under white light ((Figure 7 (a)).

The ground truth for the color wheel scene under the 5

illuminants can be seen in Figure 7 (b) and the estimated

corresponding relighting results in Figure 7 (f). We can

see that, the relighting results are very similar to the ground

truth images (Figure 7 (b)) thus demonstrating the effective-

ness of our method in recovering the spectral reflectance

and fluorescence absorption and emission spectra. When

the scene is relighted without considering fluorescent ef-

fects in the scene (Figure 7 (d)), this leads to many fluo-

rescent materials appearing as black, especially under blue-

green light (the first column in Figure 7 (d)). For the parts of

the image that are not black, we can only observe the colors

that are present in the illuminant. For example, under blue-

green light, Figure 7 (d) only shows blue and green colors.

The other results from the second to fifth columns in Figure

7 (d) and Figures 8 and 9 show similar effects.

5. Conclusion

In this paper, we presented a method to simultaneously

recover the reflectance and fluorescence absorption and

emission spectra of an entire scene by using RGB images

under varied illuminants. Making use of the illuminant-

invariant chromaticity of fluorescence, our method is capa-

ble of estimating the reflectance spectrum and chromaticity

of the fluorescent component. Moreover, the fluorescence

absorption and emission spectra are estimated accurately

by exploiting the basis representation of absorption spectra

and a strong correlation between fluorescent chromaticity

and emission spectra, respectively. The effectiveness of the

proposed method was successfully demonstrated with ex-

periments on real data taken under varied illuminants. In

addition, the recovered spectra was used to relight scenes
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(a) White light (b) Ground truth

(c) Reflectance (d) Relighted without fluorescence

(e) Fluorescence (f) Relighted with fluorescence

Figure 9. Relighting results for the fluorescent train scene.

well. In the future, we plan to extend this method to high

speed cameras under fast changing illuminants, so that all

these spectra can be recovered for fast moving objects.
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