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Abstract—Hyperspectral imaging is beneficial to many applications but most traditional methods do not consider fluorescent effects
which are present in everyday items ranging from paper to even our food. Furthermore, everyday fluorescent items exhibit a mix
of reflection and fluorescence so proper separation of these components is necessary for analyzing them. In recent years, effective
imaging methods have been proposed but most require capturing the scene under multiple illuminants. In this paper, we demonstrate
efficient separation and recovery of reflectance and fluorescence emission spectra through the use of two high frequency illuminations
in the spectral domain. With the obtained fluorescence emission spectra from our high frequency illuminants, we then describe how to
estimate the fluorescence absorption spectrum of a material given its emission spectrum. In addition, we provide an in depth analysis
of our method and also show that filters can be used in conjunction with standard light sources to generate the required high frequency
illuminants. We also test our method under ambient light and demonstrate an application of our method to synthetic relighting of real
scenes.

Index Terms—Fluorescence absorption and emission spectra, reflectance spectra, high frequency illumination.
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1 INTRODUCTION

H YPERSPECTRAL reflectance data are beneficial to
many applications including but not limited to

archiving for cultural e-heritage [1], medical imaging [2],
and also color relighting of scenes [3]. As a result, many
methods for acquiring the spectral reflectance of scenes
have been proposed [4], [5], [6], [7], [8], [9]. Despite
the success of these methods, they have all made the
assumption that fluorescence is absent from the scene.
However, fluorescence does frequently occur in many
objects, such as natural gems and corals, fluorescent
dyes used for clothing, and plant containing chlorophyll
to name a few. In fact, Barnard shows that fluorescent
surfaces are present in 20% of randomly constructed
scenes [10]. This is a significant proportion of scenes that
have not been considered by most of past methods.

Another important point is that reflective and fluores-
cent components behave very differently under different
illuminants [3], [11]. Thus to accurately predict the color
of objects, separate modeling of all spectral properties of
both reflective and fluorescent components is essential.
Specifically, when a reflective surface is illuminated by
incident light, it reflects back light of the same wave-
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(a) White light (b) Reflection (c) Fluorescence

Fig. 1: (a) The scene captured under white light. (b) The
recovered reflective component. (c)The recovered fluorescent
component.

length. Fluorescent surfaces on the other hand, first ab-
sorb incident light and then emit at longer wavelengths.
This wavelength shifting property is known as Stokes
shift [12], [13] and the question of which wavelengths
of light are absorbed and which wavelengths are emit-
ted are defined by the fluorescent surface’s absorption
and emission spectra. As the properties of fluorescence
are very different from ordinary reflection, neglecting
fluorescence can result in completely incorrect color
estimation. This in turn negatively affects many methods
that rely on accurate color estimation. For example,
algorithms for relighting and color constancy would be
affected.

The goal of this paper is to accurately recover the
full spectral reflective and fluorescent components of
an entire scene. Typical fluorescent objects exhibit both
reflection and fluorescence (Figure 1). So the question of
how these components can be accurately separated also
needs to be addressed. In this paper, we show that the



0162-8828 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TPAMI.2015.2473839, IEEE Transactions on Pattern Analysis and Machine Intelligence

2 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE

reflectance and fluorescence spectra of a scene can be
efficiently separated and measured through the use of
high frequency illumination in the spectral domain. Our
approach only assumes that the absorption spectrum of
the fluorescent material is a smooth function with respect
to the frequency of the lighting in the spectral domain.
With this assumption, it is possible to separate reflective
and fluorescent components using just two hyperspec-
tral images taken under a high frequency illumination
pattern and its shifted version in the spectral domain.
We show that the reflectance and fluorescence emission
spectra can then be fully recovered by our separation
method.

In addition to recovering reflectance and fluorescence
emission spectra, we also make the observation that
materials with similar emission spectra tend to have sim-
ilar absorption spectra as well. Using this observation,
we devise a method to estimate the absorption spectra
by taking the corresponding recovered emission spectra
from high frequency lighting.

In summary, our contributions are that we devise a
method for efficient separation and recovery of full re-
flectance and fluorescence emission spectra, and present
a method for estimating the absorption spectrum of a
material given its emission. Since we completely recover
the reflectance and fluorescence emission and absorp-
tion spectra of the scene, we also show our ability to
accurately predict the relighting of scenes under novel
lighting. In the preliminary version of this work [14],
we employed an expensive programmable light source
to produce high frequency illuminations used to separate
and recover reflective-fluorescent spectral components of
real scenes. In this paper, we provide a more in depth
analysis of our method and also show that filters can
be used in conjunction with standard light sources to
generate the required high frequency illuminants. Thus
bypassing the need for a programmable light source. We
also extend our method to work under ambient light.

The rest of this paper is organized as follows. Section
2 reviews previous work in related areas. In Section
3, we describe the reflection and fluorescence models,
and present our proposed high frequency spectra based
separation method. In addition, we present our method’s
theoretical background and its error analysis. Section 4
presents our method for fluorescence absorption estima-
tion. Section 5 provides experimental results on all esti-
mated spectra, separated reflective and fluorescent com-
ponents, and relighting results under a programmable
light source. We also extend our method to more general
light sources using two high frequency filters and show
the use of our method under ambient light. Finally, con-
clusions are drawn and future directions of our research
are discussed in Section 6.

2 RELATED WORK

As noted earlier, there have been a number of papers on
recovering the spectral reflectance of scenes [4], [5], [6],
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Fig. 2: An example of absorption and emission spectra from the
McNamara and Boswell Fluorescence Spectral Dataset [15].

[7], [8], [9]. Despite the effectiveness of these methods for
spectral reflectance capture, they do not take the effects
of fluorescence into account.

Unfortunately, not accounting for fluorescence can
have a detrimental effect on color accuracy. For exam-
ple, Johnson and Fairchild [3] showed that considering
fluorescence can dramatically improve color renderings.
Later, Wilkie et al. [16] showed accurate results by
rendering fluorescence emissions using diffuse surfaces
that can reflect light at a wavelength different from its
incident illuminant wavelength. Hullin et al. [17] showed
the importance of modeling and rendering of reflective-
fluorescent materials using their bidirectional reflectance
and reradiation distribution functions (BRRDF). Besides
color rendering, the observation of fluorescence emis-
sions on an object’s surface has also been applied to
photometric stereo for shape reconstruction [18], [19]. As
mentioned earlier, Barnard concluded that fluorescent
surfaces are present in 20% of randomly constructed
scenes [10]. Thus the presence of fluorescence is signifi-
cant and warrants attention.

In practice, fluorescent objects typically exhibit both
reflection and fluorescence so the joint occurrence of
these phenomena in scenes needs to be considered. Some
methods in the literature have given this issue atten-
tion. Lee et al. [20] provided a mathematical description
for fluorescence processes and recovered the additive
spectra of reflective and fluorescent components but did
not separate them. Alterman et al. [21] separated the
appearance of fluorescent dyes from a mixture by un-
mixing multiplexed images. Zhang and Sato [11] derived
an independent component analysis based method to
estimate the RGB colors of reflectance and fluorescence
emission but not their spectral distributions. They also
did not estimate the absorption spectrum of the fluores-
cent component and so, cannot predict intensity changes
in fluorescence emission due to different illumination
spectra. Tominaga et al. [22] estimated fluorescence emis-
sion spectra using multispectral images taken under two
ordinary light sources. A limitation is that they assumed
fluorescence emissions to be constant for all absorp-
tion wavelengths and thus cannot accurately predict
the brightness of fluorescent components under varying
illumination. Finally, none of these methods fully recover
all reflectance and fluorescence spectral components of
scenes.

In recent work, methods for hyperspectral imaging of
reflective-fluorescent scenes have been proposed. Lam
and Sato [23] provided a method for recovering the
full spectral reflectance and fluorescence absorption and
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emission spectra of scenes but they needed to capture
the scene about 30 times using a multiband camera
under multiple narrowband illuminants. Suo et al. [24]
presented a bispectral coding scheme which was rooted
in the classical bispectral measurement method [25]
where dozens of images also had to be captured under
shifting narrowband illuminations. Zheng et al. [26] also
recovered all the different types of fluorescence and
reflectance spectra using off-the-shelf lights and three
hyperspectral images. Fu et al. [27] recovered all these
spectra by using an RGB camera and capturing under
different illuminants. Both methods have advantages in
that conventional light sources or cameras can be used
but at the expense of accuracy. Our method only uses
two hyperspectral images to recover all these spectra,
and achieves highly accurate results with less illumina-
tions.

As mentioned earlier, one of the key challenges in
our problem is the separation of reflective and fluo-
rescent components from composite objects exhibiting
both phenomena. There have been a number of methods
in the literature on separating components in images.
For example, Farid and Adelson [28] used independent
components analysis to separate reflections on glass
and a painting on the side of the glass opposite the
observer. Nayar et al. [29] separated specular reflections
from diffuse reflections. It is interesting that an analogy
can be made between our spectral domain work and
the spatial domain work of Nayar et al. [30]. Whereas
previous work [30] used high frequency spatial light
patterns to separate lighting components in the spatial
domain, we use high frequency light spectra to separate
lighting components in the spectral domain.

3 SEPARATION OF REFLECTION AND FLUO-
RESCENCE

In this section, we describe the reflection and fluores-
cence models used in our method, present the separation
method for reflective and fluorescent components by us-
ing high frequency illumination, discuss the conditions
required for the illumination frequencies, and analyze
the errors of our method.

3.1 Reflection and Fluorescence Models
We begin with a brief review of how reflective-
fluorescent materials are modeled [31]. Since reflection
and fluorescence have different physical behaviors, they
need to be described by different models.

The radiance of a reflective surface depends on in-
cident light and its reflectance. The observed radiance
of an ordinary reflective surface at wavelength λ is
computed as

pr(λ) = l(λ)r(λ), (1)

where l(λ) is the spectrum of the incident light at wave-
length λ and r(λ) is the spectral reflectance of the surface
at wavelength λ.

The observed radiance of a pure fluorescent surface
depends on the incident light, the material’s absorption
spectrum, and its emission spectrum. Fluorescence typi-
cally absorbs light at some wavelengths and emits them
at longer wavelengths. The way this works is that when
incident light hits a fluorescent surface, the surface’s
absorption spectrum will determine how much of the
light is absorbed. Some of the absorbed energy is then
released in the form of an emission spectrum at longer
wavelengths than the incident light. The remainder of
the absorbed energy is released as heat. The reason for
this phenomenon is that fluorescence emission occurs
after an orbital electron of a molecule, atom or nanos-
tructure absorbs light and is excited, the electron relaxes
to its ground state by emitting a photon of light and
sends out heat after several nanoseconds. The shorter the
light’s wavelength is, the more energy the light carries.
Since some of the absorbed energy is lost as heat, the
fluorescence emission will be at a longer wavelength.
Figure 2 illustrates an example of the absorption and
emission spectra for a fluorescent material over the
visible spectrum.

Let l(λ′) represent the intensity of the incident light
at wavelength λ′, the observed spectrum of a pure
fluorescent surface [31] at wavelength λ is described as

pf (λ) =

(∫
l(λ

′
)a(λ

′
)dλ

′
)
e(λ), (2)

where a(λ
′
) and e(λ) represent the absorption and emis-

sion spectrum, respectively.
(∫

l(λ
′
)a(λ

′
)dλ

′
)

is deter-
mined by the absorption spectrum and the spectrum of
the incoming light, and is independent of the emission
spectrum. Replacing this part by scale factor k, Equation
(2)1 can be rewritten as pf (λ) = ke(λ), which means that
the shape or the distribution of the emitted spectrum
is constant, but the scale k of the emitted spectrum
changes under different illuminations. In other words,
the radiance of the fluorescence emission changes under
different illuminations, but its color (specifically, chro-
maticity) stays the same regardless of illumination color.

The radiance of a reflective-fluorescent surface point
can be expressed as a linear combination of the reflective
component pr and fluorescent component pf , i.e. p =
pr + pf . Thus,

p(λ) = l(λ)r(λ) +

(∫
l(λ

′
)a(λ

′
)dλ

′
)
e(λ). (3)

3.2 Separation Using High Frequency Illumination
In our method, we use high frequency illumination de-
fined in the spectral domain for separating reflective and
fluorescent components. Let us start with simple binary

1. This model assumes that there is little overlap between the
absorption and emission spectra. From our examination of fluorescent
materials in the McNamara and Boswell fluorescence spectral dataset,
overlap tends to be not so large. The average overlap is 50.66nm,
and the average of intersection area between absorption and emission
spectra is 14.47% of their area of union.
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Fig. 3: An example of a captured scene (a). When a reflective-
fluorescent point in the scene is lit by the illuminant (b), which
is a high frequency binary illumination pattern in the wave-
length domain, each lit wavelength includes both reflective and
fluorescent components while the unlit wavelengths have only
the fluorescent component. (c) shows its complement.

illuminants to describe the key idea of our method. We
denote a high frequency illumination pattern shown in
Figure 3(b) by l1(λ) and its complement shown in Figure
3(c) by l2(λ). The illuminants are defined such that
when l1(λ) has intensity, l2(λ) has no intensity and vice
versa. Let us consider a certain wavelength λ1, where
the wavelength λ1 is lit directly under the illuminant
l1(λ), so that l1(λ1) = 1 and then it is not lit under the
illuminant l2, so l2(λ1) = 0. Since reflection occurs at the
same wavelength with the illumination, we obtain

p1(λ1) = r(λ1) + k′e(λ1),

p2(λ1) = k′e(λ1).
(4)

Here, we assume that
∫
l1(λ

′)a(λ′)dλ′ =∫
l2(λ

′)a(λ′)dλ′ = k′. That is, the absorptions due
to our high-frequency illumination patterns are the
same. We will show in Section 3.3 this is true when the
absorption a(λ′) is smooth with respect to the frequency
of the illumination patterns in the spectral domain.
With the same absorptions under the two illuminants,
we obtain the reflectance and emission spectra at λ1 as

r(λ1) = p1(λ1)− p2(λ1),
k′e(λ1) = p2(λ1).

(5)

The reflectance and emission spectra at λ2 where
l1(λ2) = 0 and l2(λ2) = 1 are obtained in a similar
manner.

In our work, we use high frequency sinusoidal illu-
minants (Figure 4) in the spectral domain to achieve the
same effect as the binary lighting patterns because they
are more practical and also fit into the theory of our
framework. The illuminants can be represented as

l1(λ) = α+ β cos (2πflλ),

l2(λ) = α+ β cos (2πflλ+ φ).
(6)

Where fl is the frequency of illumination. The radiance
of a surface under these two illuminants can be de-
scribed as,

p1(λ) = l1(λ)r(λ) + k1e(λ),

p2(λ) = l2(λ)r(λ) + k2e(λ),

kn =

∫
ln(λ

′
)a(λ

′
)dλ

′
.

(7)
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Fig. 4: Sinusoidal illuminant patterns. The blue and pink solid
lines denote two illumination patterns. There is a phase shift
between them.

Here, assuming that kn is constant for l1 and l2, that is
to say, k1 = k2 = k, the reflectance r(λ) and fluorescence
emission ke(λ) can be recovered as

r(λ) =
p1(λ)− p2(λ)
l1(λ)− l2(λ)

,

ke(λ) = p1(λ)−
p1(λ)− p2(λ)
l1(λ)− l2(λ)

l1(λ).

(8)

Thus, to recover the reflectance r(λ) and fluorescence
emission ke(λ) completely, we first need to make k1 =
k2 = k.

3.3 Discussion on the Illumination Frequency

In this section, we discuss how to satisfy the condition
k1 = k2 = k. In the following, we consider the require-
ments for our illuminants based on the Nyquist sam-
pling theorem [32] and on an analysis of the McNamara
and Boswell fluorescence spectral dataset [15].

Let an(λ) = ln(λ)a(λ) {n = 1, 2}, where ln(λ) can be
considered as a sampling or modulating function of a(λ).
The sampling theorem, which is most easily explained
in terms of impulse-train sampling, establishes the fact
that a band-limited signal is uniquely represented by its
samples. In practice, however, narrow, large-amplitude
pulses, which approximate impulses, are relatively diffi-
cult to generate and transmit. Instead, we use sinusoidal
illuminant patterns in the spectral domain as shown
in Figure 4. These patterns are similar to amplitude
modulation functions in communication systems.

The spectrum of sinusoidal illumination l1(λ) in the
frequency domain [32] is

L1(f) =
1

2
[βδ(f − fl) + 2αδ(f) + βδ(f + fl)], (9)

where δ(f) is the Dirac delta function. Let A(f) and
An(f) denote the Fourier transform of a(λ) and an(λ),
respectively. Since the product ln(λ)a(λ) in the spectral
domain corresponds to a convolution in its Fourier
domain, i.e.

An(f) = Ln(f) ∗A(f), (10)

the Fourier transform of a1(λ) is

A1(f) =
1

2
[βA(f − fl) + 2αA(f) + βA(f + fl)] . (11)

That is, a replication of the Fourier transform of the
original signal A(f) is centered around +fl and 0 and
−fl.
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The Fourier transforms of l1(λ) and l2(λ) with the
phase offset φ are related as L2(f) = eiφL1(f), and thus
the frequency spectrum of a2(λ) is

A2(f) =
1

2
[βeiφA(f − fl) + 2αA(f)

+ βe−iφA(f + fl)].
(12)

From the definition of the Fourier transform An(f) =∫ +∞
−∞ an(λ)e

−i2πfλdλ, substituting f = 0 into this defini-
tion, we obtain

An(0) =

∫ +∞

−∞
an(λ)dλ =

∫ +∞

−∞
ln(λ)a(λ)dλ = kn. (13)

Therefore, kn corresponds to An(f)’s zero-frequency
component. This tells us that we need to satisfy the
condition A1(0) = A2(0) so that k1 = k2 = k. In
Equations (11) and (12), substituting f = 0, we obtain

A1(0) =
1

2
[βA(−fl) + 2αA(0) + βA(fl)] ,

A2(0) =
1

2
[βeiφA(−fl) + 2αA(0) + βe−iφA(fl)].

(14)

Let us define fa as a(λ)’s maximum frequency. When
fl > fa, A(−fl) and A(fl) becomes zero. This means that
we obtain A1(0) = A2(0) = 2αA(0) for fl > fa to achieve
k1 = k2 = k. Thus, the frequency of the illuminants in
the spectral domain fl needs to be greater than a(λ)’s
maximum frequency or bandwidth fa.

We now discuss the maximum frequency of a(λ)
on the McNamara and Boswell fluorescence spectral
dataset. We examine the maximum frequency of all 509
materials in the dataset, and obtain the maximum fre-
quency of each absorption spectrum while retaining 99%
of the energy1. The mean of the maximum frequency for
all absorption spectra in the dataset is 1/45.9[nm−1] and
its standard deviation is 1/24.1[nm−1]. As mentioned
previously, the illumination frequency fl needs to be
greater than a(λ)’s maximum frequency fa. As the pe-
riod is the reciprocal of the frequency, the period of the
illumination – which we call the “sampling interval” – in
the spectral domain needs to be less than the minimum
sampling interval of all absorption spectra of fluorescent
materials in the scene. Figure 5 shows the percentage
of absorption spectra in the McNamara and Boswell
fluorescence spectral dataset that satisfy the condition
k1 = k2 under different periods of the illumination.
We set the period of the illumination to 40 nm in our
experiments due to limitations of our light source. This
is still less than the mean minimum sampling interval
of all absorption spectra (45.9 nm) found in the dataset
and works well in practice.

3.4 Error Analysis
Due to limitations of the light source, we cannot produce
ideal and arbitrary high frequency illuminations. It is

1. Since there exists some noise in the original spectra, ignoring some
high frequency components is reasonable.
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Fig. 5: The percentage of absorption spectra in the McNamara
and Boswell fluorescence spectral dataset where k1 = k2 given
different the period of the illumination. The smaller the period
of the illumination, the more absorption spectra satisfy our
requirement that k1 = k2.

thus unlikely for k to be the exact constant for all
kinds of fluorescent materials in the scene under realistic
conditions. Therefore, to reduce errors, we substitute the
recovered r(λ) into both p1(λ) = l1(λ)r(λ) + k1e(λ) and
p2(λ) = l2(λ)r(λ) + k2e(λ), and average the recovered
ke(λ) from these two equations. Thus, the fluorescence
emission ke(λ) is recovered by

ke(λ) =
1

2
[k1e(λ) + k2e(λ)]

=
1

2

[
p1(λ)−

p1(λ)− p2(λ)
l1(λ)− l2(λ)

l1(λ)+

p2(λ)−
p1(λ)− p2(λ)
l1(λ)− l2(λ)

l2(λ)
]
.

(15)

If k1 6= k2,

r(λ) =
(p1(λ)− p2(λ))− (k1 − k2)e(λ)

l1(λ)− l2(λ)
. (16)

Let rerror(λ) and eerror(λ) denote the errors of r(λ)
and ke(λ) (where k = (k1 + k2)/2 when k1 6= k2). These
errors can be expressed as

rerror(λ) = abs

[
(k1 − k2)e(λ)
l1(λ)− l2(λ)

]
,

eerror(λ) = abs

[
(k1 − k2)e(λ)

l1(λ) + l2(λ)

2 [l1(λ)− l2(λ)]

]
.

(17)

For the sinusoidal illuminant ln(λ) in Equation (6),
the maximum and minimum intensities over all wave-
lengths λ are α + β and α − β. Each value in an
illuminant’s spectrum has to be positive, so α/β ≥ 1.

In Equation (17), the errors for the reflective and
fluorescence emission are directly proportional to k1−k2.
This means that the less difference between k1 and k2
there is, the smaller the errors. As α/β becomes larger,
A1(0) and A2(0) in Equation (14) are less affected by the
βA(−fl) and βA(fl) terms. As a result, the difference
between k1 and k2 can be decreased under the same
illumination frequency. Thus the k term is more robust
under different illumination conditions, when α/β is
large.

Nevertheless, when the scene is captured by the cam-
era, the noise from the camera cannot be totally avoided.
As l1(λ) − l2(λ) shrinks, r(λ) and e(λ) are increasingly
affected by noise, as can be seen in Equation (8). In order
to make the proposed method more robust to noise,
we need to make the difference l1(λ) − l2(λ) greater.
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Fig. 6: Absorption and emission spectra of two fluorescent
materials.
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Fig. 7: All test errors sorted in ascending order. 67% of cases
were below the average error of 0.012.

In practice, we set the phase shift of illuminations l1(λ)
and l2(λ) to π (Figure 4) and capture the scene at the
illumination’s peaks or crests to maximize the observed
difference in l1(λ)− l2(λ).

It is also interesting to note that the need to maximize
l1(λ) − l2(λ) also means that α/β should be closer to 1,
which is at odds with the need to make α/β large to
allow for a more robust k as discussed above. We will
discuss the influence and tradeoffs of the value of α/β
in real data in Sections 5.4 and 5.5.

4 ESTIMATING THE ABSORPTION SPECTRA

In this section, we will explain how we estimate the
absorption spectrum of a material from its emission
spectrum that was obtained using our method in Section
3.2.

The basic observation behind our method is that flu-
orescent materials with similar emission spectra tend
to have similar absorption spectra (Figure 6). From this
observation, we derive a method that uses a dictionary
of known emission and absorption spectrum pairs to
estimate an absorption spectrum from a given novel
emission.

Specifically, let ê be a known emission spectrum
whose absorption spectrum â is unknown. Let {ej}
be a dictionary of emission spectra and {aj} be the
known corresponding absorption spectra. Representing
all these spectra as vectors, we first determine the linear
combination of {ej} to reconstruct ê by solving

ê =
∑

j
wjej . (18)

The weights {wj} are then used to calculate the corre-
sponding absorption spectrum â by

â =
∑

j
wjaj . (19)

Let {e′

j} and {a′

j} denote the subsets of {ej} and
{aj} whose corresponding weights {wj 6= 0}. Note that
using the same {wj} in Equation (18) and (19) requires
the linear combination be kept between the subspaces
spanned by {e′

j} and {a′

j}. We assert that an emission
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Fig. 8: Examples of estimated absorption spectra and their root-
mean-square-errors.
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(c) Recovered r(λ) under high
frequency illuminants
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(d) Recovered r(λ) under low
frequency illuminants
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(e) Recovered e(λ) under high
frequency illuminants
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(f) Recovered e(λ) under low
frequency illuminants

Fig. 9: Evaluation of our separation method on a pink sheet
( ). (a) Two high frequency illuminations. (c) and (e) show
the recovered reflectance and fluorescence emission spectra
under these high frequency illuminations, respectively. (b) Two
low frequency illuminations. (d) and (f) show the recovered
reflectance and fluorescence emission spectra under these low
frequency illuminations, respectively. The red lines show the
ground truths and the blue lines show the estimated results.

spectrum can typically be well-represented by a sparse
basis. To show this, we perform leave-one-out cross-
validation where for each emission spectrum in the
McNamara and Boswell fluorescence spectral dataset,
we set ê as the testing sample and use the remaining
emission spectra in {ej} as the dictionary. We find that
any given emission ê can on average be well represented
by 10 emission spectra from the dictionary, which is very
sparse compared to the size of the whole dictionary. Thus
ê can considered to live in a low-dimensional sub-space
spanned by {e′

j}. Therefore, to minimize the number of
basis vectors used from {ej}, we seek to reconstruct ê
by sparse weights w through l1-norm minimization [33],
[34], [35], according to

min ‖w‖1 s.t. wj ≥ 0 and
∥∥∥ê−∑

j
wjej

∥∥∥2
2
≤ ε.

(20)
To test the accuracy of our method, we chose a subset

of materials from the McNamara and Boswell fluores-
cence spectral dataset where both the emission and
absorption spectra are present in the visible range (400 -
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(b) Recovered r(λ)
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(c) Recovered e(λ)

400 500 600 700
0

0.5

1

1.5

Wavelength (nm)

In
te

n
s
it
y

Emission Spectra

 

 

Estimated (RMSE=0.019)

Ground Truth

(d) Recovered e(λ)
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(e) Recovered a(λ)
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(f) Recovered a(λ)

Fig. 10: Recovered reflectance r(λ), fluorescence emission e(λ)
and absorption a(λ) spectra of the red ( ) and yellow ( )
sheets.

720 nm). This results in a collection of 183 materials. We
then perform leave-one-out cross-validation using our
method and the 183 emission and absorption spectra.
The estimated absorption spectrum is then compared
against the ground truth using the mean root square

error
√(∑

λ (a
gt(λ)− are(λ))2 dλ

)
/N , where agt(λ) and

are(λ) are the ground truth and recovered spectra at
wavelength λ, respectively. N is the discrete number
of wavelengths representing the spectrum in the visible
range. The ground truth and estimation are also normal-
ized for scale by setting them to be unit length vectors.

In our results, we obtain an average error of 0.012.
See Figure 7 for a plot of all the errors for the 183
estimated absorption spectra. We do find a minority of
cases with high errors that violate our assumption that
similar emission spectra map to the same absorption
spectra. Despite this, the majority of materials fit our
assumption and absorption spectra are accurately esti-
mated as seen in Figure 8. We also note that absorption
only determines the scale of the emission and not the
color of the material. Thus some minor loss in accuracy
for estimated absorption does not have a dramatic effect
on the predicted color of scenes.

5 EXPERIMENT RESULTS AND ANALYSIS

In our experiments, we first demonstrate the importance
of high frequency illumination using quantitative results
on the recovery of reflectance and fluorescence spectra
from real scenes. We then present visual examples of
separated reflective and fluorescent components using
images captured under high frequency illuminations
produced by a programmable light source, and use our
recovered spectra to accurately relight fluorescent scenes.
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Fig. 11: Recovered reflectance spectra for the ordinary reflective
materials (red arrows) and fluorescence emission spectra for
the fluorescent materials (green arrows).
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Fig. 12: Comparison results on the fluorescent yellow sheet.

We then bypass the need for an expensive programmable
light source by using filters in conjunction with standard
light sources to generate the required high frequency il-
luminants. Finally, we show that our method also works
under ambient light.

5.1 Experimental Setup

With the exception of near UV light and ambient lights
used in Subsection 5.5, for all other illuminants in this
section, we use a Nikon Equalized Light Source (ELS).
The ELS is a programmable light source that can produce
light with arbitrary spectral patterns from 400 nm to 720
nm. We use a PR-670 SpectraScan Spectroradiometer to
collect ground truth spectra. For our proposed method,
we use a hyperspectral camera (EBA Japan NH-7) to
capture whole scenes.

Figure 9(a) shows two high frequency illuminants
produced by the ELS. Under these illuminants, we use
the hyperspectral camera to capture the scene at wave-
lengths where either one of these illuminants have peaks
so that the difference between l1 and l2 would be large
and allow for reliable separation.

5.2 Quantitative Evaluation of Recovered Spectra

In this section, we first compare quantitative results
on recovering the reflectance and fluorescence spectral
components using high and low frequency lights on
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(a) Four captured channels under illuminant l1

(b) Four captured channels under illuminant l2

(c) Separated reflective components on 4 channels

(d) Separated fluorescent components on 4 channels

Fig. 13: The separation results on 4 channels of the hyperspec-
tral images for a scene with fluorescent and non-fluorescent
roses. These four channels, from left to right, are at 520 nm,
540 nm, 600 nm, and 620 nm.

fluorescent colored sheets. To make the quantitative
evaluation, we measure the root mean square error
(RMSE) of the estimated spectra, with respect to their
corresponding ground truth. Figure 9(a) and (c) show
spectral distributions of the high frequency and low
frequency illuminants used in our experiments. These
illuminants are then used to recover spectra that are
compared against the ground truth spectra.

The ground truth reflectance and fluorescent absorp-
tion and emission spectra of the fluorescent material are
captured by bispectral measurements [25]. In this proce-
dure, narrowband illuminants are employed across the
visible spectrum. The reflectance spectra are measured
at the same wavelength as the narrowband illuminant,
fluorescence emission spectra are measured at longer
wavelengths than the illuminations, and fluorescence ab-
sorption spectra are measured by observing the emission
at a certain wavelength λ while varying the illuminant
wavelength λ

′
for λ

′
< λ.

In Figure 9(b)-(f), we see the recovered reflectance
and fluorescence emission spectra of a pink fluorescent
sheet under different frequency illuminants. The recov-
ered reflectance (Figure 9(b)) and fluorescence emission
spectra (Figure 9(e)) under the high frequency illumi-
nants approximate the ground truth well. When the
object is captured under the low frequency illuminants,

(a) Illuminant l1 (b) Illuminant l2 (c) Near UV light

(d) Green light (e) Relighted (f) Relighted (Ref)

(g) Blue light (h) Relighted (i) Relighted (Ref)

Fig. 14: The relighting results for a scene with fluorescent and
non-fluorescent roses. “Ref” denotes relighting with only the
reflective component.

the recovered reflectance (Figure 9(d)) and fluorescence
emission (Figure 9(f)) have obvious errors. Figure 10(a)-
(d) shows the recovered reflectance and fluorescence
emission spectra of the red and yellow fluorescent sheets
under the high frequency illuminants. All these results
demonstrate that our method is able to recover re-
flectance and fluorescence emission spectra efficiently
under high frequency illuminants.

In Figure 10(e) and (f), the recovered fluorescence ab-
sorption spectra of the red and yellow fluorescent sheets
are shown. Due to limitations of our capture equipment,
the ground truth could not be accurately measured in
the short wavelength region in cases where absorption
was relatively weak. This issue can be seen in the shorter
wavelengths for the red sheet (Figure 10(e)). However,
we can see that the recovered absorption spectra and the
ground truth measurements still agree quite well.

We now show that our method works well for both
ordinary reflective materials and fluoresent materials.
For ordinary reflective materials, the reflectance spec-
trum can be easily recovered by capturing the scene
under white light across the visible spectrum, while
the emission spectrum for a fluorescent material can be
easily captured at longer wavelengths under near UV
light. Generally, a scene consists of both ordinary reflec-
tive materials and fluorescent materials. Here, we first
evaluate the recovered reflectance spectra for ordinary
reflective materials and the emission spectra for fluo-
rescent materials. Their ground truth data are captured
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(a) Illuminant l1 (b) Recovered pr (c) White light (d) Green light (e) Relighted (f) Relighted (Ref)

(g) Illuminant l2 (h) Recovered pf (i) Near UV light (j) Blue light (k) Relighted (l) Relighted (Ref)

Fig. 15: Separation and relighting results for a fluorescent and a non-fluorescent color chart.

(a) Illuminant l1 (b) Recovered pr (c) White light (d) Green light (e) Relighted (f) Relighted (Ref)

(g) Illuminant l2 (h) Recovered pf (i) Near UV light (j) Blue light (k) Relighted (l) Relighted (Ref)

Fig. 16: Separation and relighting results for a scene with fluorescent and non-fluorescent objects.

under white light and near UV light, respectively. In our
method, the reflectance spectrum r(λ) and the emission
spectrum e(λ) are estimated by Equations (8) at the same
time. Figure 11 shows recovered reflectance spectra for
ordinary materials (red arrows) and fluorescence emis-
sion spectra for the fluorescent materials (green arrows)
by using high frequency illuminations. We can see that
all recovered spectra (blue line) approximate the ground
truth (red line) well. This demonstrates that our method
can effectively separate fluorescent emission spectra e(λ)
from the fluorescent material, and also works for ordi-
nary reflective materials, in which e(λ) = 0, r(λ) can be
well recovered by the first Equation in (8).

We also compared our method against state-of-art
works [26] [27]. To allow for the fairest comparison
under ideal conditions with all these methods, we per-
formed synthetic tests. As shown in Figure 12, we can see
that our method achieves similar accuracy to [26], which
uses three hyperspectral images and needs to capture
enough hyperspectral bands to separate reflective and
fluorescent components, while our method uses two hy-
perspectral images and can also separate reflective and
fluorescent components for any number of narrowband
channels under these two high frequency light spectra.
Compared against [27], which uses multiple color RGB
images, we achieve high accuracy results.

5.3 Visual Separation and Relighting Results

In this section, we show results for the separation of
reflection and fluorescence as well as accurate relighting
performance on visual images. Our original results are
in the form of hyperspectral images. Figure 13 shows

four channels of the hyperspectral images and sepa-
rated results by using high frequency illuminations for
a fluorescent scene. From the left to the right columns,
Figure 13(a) shows the scene captured at the peak, crest,
peak, and crest wavelengths of illuminant l1. Corre-
spondingly Figure 13(b) shows the scene captured at
the crest, peak, crest, and peak of illuminant l2 at the
same wavelengths. The wavelengths get longer from
the left to right columns. Their separated reflective and
fluorescent components are shown in Figure 13(c) and
(d), respectively. The separated fluorescent components
(Figure 13(d)) only contain the fluorescent material, and
demonstrate that our method can effectively separate the
reflective and fluorescent components. We also see that
the green and yellow fluorescent roses are clearly visible
in the shorter wavelengths (the first and second columns
in Figure 13(d)) and the orange and red fluorescent roses
are clearly visible in the longer wavelengths (the third
and fourth columns in Figure 13(d)).

To easily visualize hyperspectral images, we have
converted them all to RGB images in the following. The
first scene is an image consisting of fluorescent and non-
fluorescent roses and is taken under two high frequency
illuminants (Figure 14(a) and (b)). Figure 1(b) and (c) are
the corresponding separated reflective and fluorescent
components. The roses in 4 corners (the red arrows in
Figure 11) only have ordinary reflection so their colors
in the recovered reflective component (Figure 1(b)) are
the same as those seen under white light (Figure 1(a)).
Looking at the center rose, which is made from the red
sheet in Figure 1(a), we see that the recovered fluorescent
component appears to be red. The measured emission
spectrum of the red sheet (Figure 10(c)) indicates that



0162-8828 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TPAMI.2015.2473839, IEEE Transactions on Pattern Analysis and Machine Intelligence

10 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE

the color of the fluorescent component is indeed red.
In addition, the scene captured under near UV light
(Figure 14(c)) shows nearly pure fluorescent emission
colors that also agree with our results in Figure 1(c).
We note that since each fluorescent material has its own
absorption spectrum, the value for

(∫
l(λ

′
)a(λ

′
)dλ

′
)

is
different between fluorescent materials captured under
near UV light and high frequency light. As a result,
under different lighting, fluorescent objects can exhibit
different scales of emission, but the chromaticities match
well as can be seen by comparing the images under near
UV light (Figure 14(c)) and for the recovered fluorescent
component (Figure 1(c)).

Since our method is able to recover the full reflectance,
fluorescence emission, and fluorescence absorption spec-
tra for an entire scene, we are also able to relight scenes.
Figure 14 shows that real scenes can be accurately re-
lighted using our method. The scenes are captured under
green (Figure 14(d)) and blue (Figure 14(g)) illuminants.
The corresponding relighting results are shown in Fig-
ure 14(e) and (h). We can see that, the relighting results
are very similar to the ground truths (Figure 14(d) and
(g)), and demonstrate the effectiveness of our method in
recovering the reflectance and fluorescence emission and
absorption spectra. When the scene is relighted using
the reflective component only (Figure 14(f) and (i)), this
leads to many fluorescent materials appearing as black,
especially under blue light (Figure 14(i)).

Figures 15 and 16 show additional separation of re-
flection and fluorescence on two other fluorescent scenes
and their relighting results. They are a fluorescent color
checker with a Macbeth color chart, and fluorescent
and non-fluorescent notebooks. The separated reflective
component (Figure 15-16(b)) for the ordinary reflective
material is the same as those seen under white light
(Figure 15-16(c)), and the separated fluorescent com-
ponent (Figure 15-16(h)) also approximates the scene
captured under near UV light (Figure 15-16(i)) which
shows nearly pure fluorescence emission colors. The
relighting results (Figure 15-16(e)(k)) were all close to
the ground truth (Figure 15-16(d)(j)). These additional
results on real scenes show that our method is effective
for different scenes.

5.4 Separation by Using High Frequency Filters

In the previous parts of this section, we employ a
programmable light source known as the ELS to produce
complementary high frequency illuminants, by which
the excellent experimental results can be obtained. How-
ever, programmable light sources such as the ELS are
prohibitively expensive for many laboratories and con-
sumers. They are also heavy and thus not portable. Due
to these limitations, we designed two complementary
high frequency filters, which are portable, as shown in
Figure 17. These two filters are put in front of a light
source to modulate an illuminant into high frequency
illuminations that are the same as the lights produced
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Fig. 17: The two high frequency filters (a) and their spectra (b).
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Fig. 18: Recovered reflectance r(λ) and fluorescence emission
e(λ) of a pink fluorescent sheet under high frequency illumi-
nants produced by the ELS, and C light through high frequency
filters and D55 light through high frequency filters.

by the programmable light source. They are designed as
two complementary sinusoidal patterns with periods of
20 nm 2.

Let us denote one of filters as F1 and its complement as
F2. The illumination l(λ) after going through the filters
can be described as

lf1 (λ) = F1(λ)l(λ),

lf2 (λ) = F2(λ)l(λ).
(21)

When the spectrum of light l(λ) is flat (constant for
all wavelengths λ), we can see that lfn (n = 1, 2) are
equivalent to the lights ln (n = 1, 2) discussed in Section
3.

However, common light sources such as daylight and
off-the-shelf lights are not exactly flat, so we need to
evaluate how an arbitrary light source affects the resul-
tant high frequency illuminations. We first replace ln(λ)
with lfn(λ) in Equation (7) and obtain

p1(λ) = F1(λ)l(λ)r(λ) + k1e(λ),

p2(λ) = F2(λ)l(λ)r(λ) + k2e(λ),

kn =

∫
Fn(λ

′
)l(λ

′
)a(λ

′
)dλ

′
.

(22)

As discussed in Section 3.4, the errors for the recovered
reflectance and fluorescence emission spectra are directly
proportional to k1 − k2. In this case, the difference
between k1 and k2 is decided by the spectra of the filters
Fn(λ), illuminant l(λ) and fluorescent absorption a(λ).
Table 1 shows the mean percent differences between
k1 and k2 for 183 absorption spectra, where each row
corresponds to a CIE standard illuminant. To explore the
influences due to the frequency and the appearance of
the filters, we calculate the mean percentage on 3 kinds

2. Due to limitations in manufacturing of the filters, we cannot
produce the exact sinusoidal spectra in the filters.
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TABLE 1: The mean percent difference between k1 and k2 for
183 absorption spectra on CIE Standard Illuminants [36] with
the ideal sinusoidal pattern filters and real filters. “Ideal (20
nm)” and “Ideal (40 nm)” denote filters with ideal sinusoidal
patterns and periods of 20 nm and 40 nm. “Real Filters” are
the filters used in our experiments and their spectra are shown
in Figure 17.

Illuminant Ideal Ideal Real
(40 nm) (20 nm) Filters

E 2.56 0.34 0.44
A 2.79 0.33 0.37
B 2.64 0.29 0.36
C 2.59 0.28 0.36

D50 2.70 0.46 0.42
D55 2.66 0.45 0.42
D65 2.61 0.44 0.43
D75 2.57 0.43 0.44
F1 8.06 1.41 0.44
F2 9.57 1.74 0.59
F3 11.25 2.13 0.77
F4 13.00 2.56 0.97
F5 7.92 1.36 0.41
F6 9.92 1.80 0.62
F7 7.82 1.33 0.43
F8 8.74 1.50 0.54
F9 9.86 1.74 0.65

F10 14.56 3.12 1.02
F11 16.58 3.73 1.21
F12 19.20 4.52 1.47

of filters, “Ideal (40 nm)”, “Ideal (20 nm)”, and “Real
Filters”.

“Ideal (40 nm)” and “Ideal (20 nm)” denote ideal
sinusoidal patterned filters with 40 nm and 20 nm
periods and ratio α/β = 1. According to the discussion
in Section 3.3, when the frequency of the filters is higher,
the difference between k1 and k2 will be lower. In Table
1, we can see that the differences under “Ideal (20 nm)”
are less than those under “Ideal (40 nm)” under the same
illuminant l(λ).

The real filters shown in Figure 17 approximate the
ideal sinusoidal patterns well and have the same period
as the “Ideal (20 nm)” filters, but the value, α/β of
the real filters is larger. Recall that in Section 3.4, we
discussed that the difference between k1 and k2 relies
on the high frequency component β cos(2πflλ) in the
illuminant and is not related to the direct current (DC)
component α. Thus, when the ratio α/β becomes larger,
the difference between k1 and k2 is reduced. As shown in
Table 1, under most standard illuminants, the difference
between k1 and k2 under “Real Filters” is lower than
for the “Ideal (20 nm)” filters for the same standard
illuminant. Nevertheless, in some cases, the difference
between k1 and k2 under “Real Filters” is a little larger
than those in the “Ideal (20 nm)” filters. This is because
the real filters are not the exact sinusoidal spectra and

exhibit some distortions. Figure 18 shows the recovered
reflectance r(λ) and fluorescence emission e(λ) of a pink
fluorescent sheet under high frequency illuminants pro-
duced by the ELS, C light through high frequency filters,
and D55 light through high frequency filters. All these
recovered spectra approximate the ground truth well.
This indicates that the errors for recovered reflectance
and emission spectra are acceptable and our method is
effective using high frequency filters on real data.

Figure 19 shows the separated reflective and fluores-
cent components under different illuminants through the
high frequency filters. The first column shows the high
frequency illuminations’ spectra, resulting from using
different light sources. Taking a channel at 550 nm as
an example, the second and third columns show the
captured images under two high frequency illumina-
tions, and their separation results are shown in the third
and fourth columns. The fifth and sixth columns show
separation results over all captured spectra in RGB im-
ages. Figure 19(b)-(d) show the separation results under
C, D55 and F5 lights with the high frequency filters,
respectively. Compared with the separation results under
the high frequency illuminations produced by the ELS
(Figure 19(a)), we can see that the separation results
using the high frequency filters are competitive but
there is more noise, for example, in the two fluorescent
flowers. The decreased amount of light going through
the filters likely caused the camera to exhibit more noise.
The ratio α/β for the high frequency filters is also much
larger than for the spectra produced by the ELS, which
makes the separation results more sensitive to the noise
from the camera and also contributes to the noise.

5.5 Ambient Illumination
So far, we have extended our method to more general
light sources by using high frequency filters instead of
the ELS, but we did not consider ambient light. In the
following, we discuss the affect that ambient light has
on our approach. Let us denote an ambient illuminant
as la(λ). Without loss of generality, the two illuminants
produced by either the ELS or flat light source with
filters are defined as l1(λ) and l2(λ). So the illuminations
with ambient light can be described as

la1(λ) = l1(λ) + la(λ),

la2(λ) = l2(λ) + la(λ).
(23)

Replacing the ln(λ) by lan(λ) in Equation (7), we obtain

p1(λ) = [l1(λ) + la(λ)]r(λ) + k1e(λ),

p2(λ) = [l2(λ) + la(λ)]r(λ) + k2e(λ),

kn =

∫
[ln(λ) + la(λ)]a(λ

′
)dλ

′
.

(24)

Since the ambient illuminant la is the same under the
two different high frequency illuminants la1(λ) and la2(λ),
the difference between k1 and k2 is only related to the
high frequency illuminants l1(λ) and l2(λ). Intuitively,
the intensity of the ambient illuminant can be considered
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(d) F5 light with filters

Fig. 19: The separation results with the high frequency filters. The spectra of the illuminants are shown in the first column.
Taking a channel at 550 nm as an example, the second and third columns show the captured images under 2 high frequency
illuminations, and their separated reflective and fluorescent components are shown in third and fourth columns. The fifth and
sixth columns show reflective and fluorescent components over all captured spectra in RGB images. To make comparison, the
first row shows the separation results under high frequency illuminations produced by ELS. From second to fourth rows, the
separation results under C, D55 and F5 lights with the high frequency filters are shown, respectively.
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(c) ELS + non-flat light
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(d) C light with filters + non-flat light

Fig. 20: The separation results with ambient light. The spectra of illuminants are shown in the first column, where the green
curves in the first and third rows are the spectra of the flat and non-flat ambient light. Taking a channel at 550 nm as an
example, the second and third columns show the captured images under 2 high frequency illuminations, and their separated
reflective and fluorescent components are shown in third and fourth columns. The fifth and sixth columns show reflective and
fluorescent components over all captured spectra in RGB images. From the first to fourth rows, we see separation results under
high frequency illuminants produced by the ELS with flat ambient light (D50), C light through high frequency filters with flat
ambient light, high frequency illuminants produced by the ELS with non-flat ambient light (typical of a fluorescent lamp), and
C light through high frequency filters with non-flat ambient light, respectively.
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Fig. 21: The separation results under strong ambient light, which is typical of fluorescent lamps. (a) shows the two illuminations
used to illuminate scene. (b) and (c) show separation results at crests of the ambient light spectrum at 520 nm, (d) and (e) show
results at peaks of the ambient light spectrum 540 nm, and (f) and (g) show results over the visible spectrum as RGB images.

as a part of the DC component α, which is also the same
under two complementary high frequency illuminations.
Thus, our method can be directly used on scenes with
ambient light, and the reflectance and fluorescence emis-
sion spectra can be recovered by Equation (8), in which
the illuminations ln(λ) are replaced by lan(λ).

Figure 20 shows the separation results under differ-
ent high frequency illuminants and ambient light. The
spectra of flat and non-flat ambient lights are shown as
green lines in the first column of Figure 20(a) and (c).
We can see that all separation results under flat ambient
light (Figure 20(a) and (b)) and non-flat ambient light
(Figure 20(c) and (d)) are clear. These results demonstrate
that our method works well under both flat and non-flat
ambient light sources. Compared with the results under
the high frequency illuminations produced by the ELS
(Figure 20(a) and (c)), the separation results under lights
through the high frequency filters (Figure 20(b) and (d))
contain noise like in Figure 19, but are also acceptable.

We also capture the scene under a strong ambient
illuminant which is typical of a fluorescent lamp, and
show the separation results in Figure 21. The results on
the crest located at 520 nm of the ambient light spectrum
show clear separation of the components (Figure 20(b)
and (c)), while the results on the peak at 540 nm of
the ambient light spectrum are clearly wrong (Figure
20(d) and (e)). This is because the DC component in
the lan(λ) is larger and the observation of two high
frequency illuminations will be almost same under the
strong ambient illuminant spectrum in that range. The
separation results are easily affected by camera noise.
Therefore, we need to choose a higher intensity light
source when the ambient illuminant is strong in practice.

6 LIMITATIONS AND CONCLUSION

In this paper, we presented a method to simultaneously
recover the reflectance and fluorescence emission spectra
of an entire scene by using high frequency illumination
in the spectral domain. Afterward, we presented our
method for estimating the fluorescence absorption spec-
trum of a material given its emission spectrum. Through
our method, we also showed that similar emission
spectra tend to map to similar absorption spectra. The
effectiveness of the proposed method was successfully
demonstrated with experiments using real data taken
by a spectroradiometer and camera, both in conjunction
with a programmable light source. To extend our method
to much more general light sources, we designed two

high frequency filters and employed them under CIE
standard illuminants. We demonstrated that when the
light source is flat enough compared with the frequency
of the filters, our method also works well. We also imple-
mented our method under high frequency illuminations
with flat/non-flat ambient light, and the results show
that our method works well under different types of
ambient light.

There are still a few limitations in our research that
are worth attention and further investigation. First, the
two high frequency filters used in our experiments af-
fect the separation results, due to their distortions of
the sinusoidal patterns and the differences between the
peaks and crests of the light spectra. In the future, we
will design/employ much better high frequency filters,
which have much smaller distortions, and especially
smaller values of α/β, to make them more robust to
noise. Second, we did not consider shading from the
light source and specularity from the materials in our
work. More importantly, shading and specularity can
provide more information about a scene. Therefore, it
is worth investigating a more comprehensive model for
reflective and fluorescent separation to make it applica-
ble to more real cases.
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